

December 4, 2015

VIA ELECTRONIC MAIL

Gina McCarthy Administrator U.S. Environmental Protection Agency 1200 Pennsylvania Ave., NW Washington, D.C. 20460

Re: Comments for Three Regulatory Proposals issued September 18, 2015:

- 1) Oil and Natural Gas Sector: Emission Standards for New and Modified Sources (80 Fed. Reg. 56,593)
- 2) Release of Draft Control Technique Guidelines for the Oil and Natural Gas Industry (80 Fed. Reg. 56,577)
- 3) Source Determination for Certain Emission Units in the Oil and Natural Gas Sector (80 Fed. Reg. 56,579)

Dear Administrator McCarthy:

These comments are filed on behalf of the Independent Petroleum Association of America (IPAA) and the American Exploration and Production Council (AXPC) (collectively, IPAA/AXPC).¹

IPAA represents the thousands of independent oil and natural gas explorers and producers, as well as the service and supply industries that support their efforts, that will most directly be impacted by the U.S. Environmental Protection Agency (EPA) policy decisions to regulate methane directly from the oil and natural gas sector. Independent producers develop about 95 percent of American oil and gas wells, produce 54 percent of American oil, and produce 85 percent of American natural gas. Historically, independent producers have invested over 150 percent of their cash flow back into domestic oil and natural gas development to find and produce more American energy. IPAA is dedicated to ensuring a strong, viable domestic oil and natural gas industry, recognizing that an adequate and secure supply of energy is essential to the national economy.

AXPC is a national trade association representing 30 of America's largest and most active independent oil and natural gas exploration and production companies. AXPC members are "independent" in that their operations are limited to exploration for and production of oil and natural gas. Moreover, our members operate autonomously, unlike their fully integrated counterparts, which operate in additional segments of the energy business, such as downstream refining and marketing. AXPC members are leaders in developing and applying innovative and

¹ For ease of reference, these comments include an Acronym Index, attached hereto as "Attachment A."

INDEPENDENT PETROLEUM ASSOCIATION OF AMERICA • 1201 15TH STREET, NW • SUITE 300 • WASHINGTON, DC 20005 202-857-4722 • FAX 202-857-4799 • WWW.IPAA.ORG

advanced technologies necessary to explore for and produce oil and natural gas, both offshore and onshore, from unconventional sources.

Additionally, they are joined by the American Association of Professional Landmen (AAPL), the Association of Energy Service Companies (AESC), the International Association of Drilling Contractors (IADC), the International Association of Geophysical Contractors (IAGC), the National Stripper Well Association (NSWA), the Petroleum Equipment & Services Association (PESA), the US Oil & Gas Association (USOGA), and the following organizations:

Arkansas Independent Producers and Royalty Owners Association California Independent Petroleum Association Coalbed Methane Association of Alabama Colorado Oil & Gas Association East Texas Producers & Royalty Owners Association Eastern Kansas Oil & Gas Association Florida Independent Petroleum Association Idaho Petroleum Council Illinois Oil & Gas Association Independent Oil & Gas Association of New York Independent Oil & Gas Association of West Virginia Independent Oil Producers' Agency Independent Oil Producers Association Tri-State Independent Petroleum Association of New Mexico Indiana Oil & Gas Association Kansas Independent Oil & Gas Association Kentucky Oil & Gas Association Louisiana Oil & Gas Association Michigan Oil & Gas Association Mississippi Independent Producers & Royalty Association Montana Petroleum Association National Association of Royalty Owners Nebraska Independent Oil & Gas Association New Mexico Oil & Gas Association New York State Oil Producers Association North Dakota Petroleum Council Northern Montana Oil and Gas Association Ohio Oil & Gas Association Oklahoma Independent Petroleum Association Panhandle Producers & Royalty Owners Association Pennsylvania Independent Oil & Gas Association Permian Basin Petroleum Association Petroleum Association of Wyoming Southeastern Ohio Oil & Gas Association Tennessee Oil & Gas Association **Texas Alliance of Energy Producers**

> Texas Oil and Gas Association Texas Independent Producers and Royalty Owners Association Utah Petroleum Association Virginia Oil and Gas Association West Slope Colorado Oil & Gas Association West Virginia Oil and Natural Gas Association

Collectively, these groups represent the thousands of independent oil and natural gas explorers and producers, as well as the service and supply industries that support their efforts, that will be most significantly affected by the actions resulting from these regulatory proposals. In addition to the specific comments made herein, we support those comments submitted separately by the participants in these comments. IPAA/AXPC also endorses and supports the comments of the Western Energy Alliance (WEA) and the American Petroleum Institute (API) submitted on the proposed rules referenced above.

As an initial matter, these comments are designed to address the three aforementioned proposed regulatory actions simultaneously and will be submitted to all three dockets as all three proposals target the oil and natural gas industry, and certain responses and arguments from IPAA/AXPC are applicable to all of the proposals. Additionally, comments on all three proposals were initially due November 17, 2015. IPAA requested an extension of the 60-day comment period on October 2, 2015, due to the complexity and breadth of the proposed regulations and that certain key supporting documents were not available in the docket for public review when the EPA published the proposals in the Federal Register on September 18, 2015. In late October/early November various informed parties who had requested additional time to comment learned that they would have until December 4, 2015. On November 13, 2015, the extension was published in the Federal Register.

EXECUTIVE SUMMARY

These comments raise a number of key issues associated with EPA's proposals for Clean Air Act (CAA or Act) New Source Performance Standards (NSPS), Control Technique Guidelines (CTG) and Source Determination for oil and natural gas production facilities.

EPA justifies its proposals in the context of the Administration's Climate Action Plan with a specific target of reducing methane emissions from the oil and natural gas sectors by 40-45 percent during the time period from 2012 through 2025. However, as these comments demonstrate, EPA's proposals are unnecessary, unjustified, poorly developed and counterproductive.

First, the Administration proclaims its intent to reduce methane emissions by 40-45 percent from the oil and natural gas sectors. At the same time, it takes credit for its 2012 volatile organic chemical/methane emissions regulations in these sectors that exceed its own target. Moreover, it fails to recognize that much of the reduction it seeks has occurred since 2012 from voluntary industry actions. The oil and natural gas production sector is 1.07 percent of the national Greenhouse Gas Inventory and its methane emissions will continue to drop because of industry emissions management. Consequently, any justification for additional regulation must

be thoroughly weighed based on cost effectiveness and economic consequences. EPA's proposals fail these tests.

Second, within the NSPS proposal, the most egregious element is the proposed fugitive emissions regulations that are based on purely speculative emissions reductions but, as designed, are excessively and unnecessarily burdensome. Oil and natural gas production fugitive emissions management is an emerging arena with companies and state regulatory programs still learning how best to efficiently and effectively control them. Several states are currently implementing programs; none of which parallel EPA's proposals. Experience with those state efforts demonstrates that emissions patterns result from a few high emissions sources that can be managed quickly with sustained reductions. EPA's proposal to lock in an unworkable program for at least 5 years is arbitrary and inappropriate. EPA should await the analysis of state programs to determine whether an NSPS is logical or necessary.

Third, EPA also proposed a volatile organic compound (VOC) CTG for Ozone nonattainment areas. This proposal fails to comply with the Agency's fundamental responsibility of developing Reasonably Available Control Technology (RACT). Instead, EPA largely transposes the same requirements in the 2012 NSPS and those proposed in this regulatory action from new sources to existing ones. In doing so, EPA fails to determine whether these new facility requirements are economically appropriate as CTG for existing sources on a national basis.

Fourth, by linking its CTG proposal to its Climate Action Plan, EPA fails to address the need for the CTG with regard to Ozone nonattainment. Yet, the threshold question for these regulations is whether they are necessary and appropriate for attainment of the Ozone National Ambient Air Quality Standards (NAAQS). If fact, based on EPA's analysis of the regulatory framework to attain the recently revised Ozone NAAQS, EPA demonstrates the CTG are wholly unnecessary. Prior to proposing these CTG, EPA concluded that all but a few areas of the country will meet the new Ozone NAAQS by 2025 using national, federal regulatory requirements. Consequently, for these areas, the proposed CTG are excessive regulations. For the remaining enduring Ozone nonattainment areas, if there are oil and natural gas production operations that need to be addressed, they can be managed through local determinations of Reasonably Available Control Measures (RACM) and do not require CTG.

Fifth, because these CTG are unnecessary, their likely impact will be the inappropriate restriction of economic growth in Ozone nonattainment areas. Given that EPA has concluded that Ozone NAAQS attainment will be achieved without these CTG, these CTG will remove emissions that could be used as CAA required new source offsets. Therefore, they would unnecessarily impede economic growth that would otherwise occur.

Sixth, in its proposal to address Source Determination for oil and natural gas production facilities, EPA should recognize that new facilities should be based on a narrow definition that hones closely to the approach EPA has used under the National Emissions Standards for Hazardous Air Pollutants (NESHAP) program. Where there are issues regarding scope, the source determination should be based on the sites being contiguous in addition to sharing the same Standard Industrial Classification (SIC) Code and being under common control.

These comments will expand on the issues raised above and other more specific ones. Ultimately, however, IPAA/AXPC argues that EPA's NSPS and CTG proposals must be withdrawn, reconsidered and revised to be consistent with the Administration's own Climate Action Plan objectives and its assessment of the capability of the nation to meet the revised Ozone NAAQS. To do otherwise would arbitrarily impose excessive regulation on the oil and natural gas setoff for no purpose other than to expand the already burdensome federal regulatory program.

I. EPA's Additional New Source Performance Standards for the Exploration and Production Segment and Control Technique Guidelines for Existing Sources are Unnecessary and Misplaced.

EPA's proposed NSPS targeting methane emissions from the exploration and production segment of the oil and natural gas sector are unnecessary, unwarranted, and wasteful – not only to those subject to the regulations but to the state and federal regulators who must implement the rules if EPA does not change its course. Similarly, proposing essentially the same set of controls on existing sources in nonattainment areas (and ozone transport regions) using the proposed CTG with no additional economic justification/cost-benefit analysis is one more indication that EPA is rushing to judgment with its latest salvo of regulations. In April 2014, EPA acknowledged the lack of knowledge to regulate a variety of sources and implemented a White Paper process that sought additional technical information on a variety of sources.² Industry raised numerous concerns regarding EPA's lack of data regarding emissions from these sources and the cost/effectiveness of controls from these sources. Nonetheless, EPA proceeded headlong to promulgate its methane NSPS – relying heavily on the Regulatory Impact Analysis (RIA) from the VOC NSPS promulgated in 2012. The methane regulations need to "stand on their own, not simply as an "add-on" to the VOC NSPS.

These regulations will have a serious negative economic impact on American oil and natural gas production while providing marginal environmental benefit beyond the regulations EPA promulgated in 2012 to regulate VOCs from essentially the same set of production and exploration emission sources.³ To understand the full impact, it is essential to put the entire issue in perspective.

² U.S. Environmental Protection Agency, Section on Oil and Natural Gas Air Pollution Standards, *Methane*, *available at* <u>http://www3.epa.gov/airquality/oilandgas/methane.html</u>.

³ Oil and Natural Gas Sector: New Source Performance Standards and National Emission Standards for Hazardous Air Pollutants Reviews, 77 Fed. Reg. 49,490 (Aug. 16, 2012).

From 2008 through 2013, U.S. shale gas production grew 400 percent,⁴ while methane emissions have declined 13.3 percent. According to 2013 EPA Greenhouse Gas (GHG)

Reporting data, methane emissions from oil and natural gas exploration and production are 1.07 percent of total U.S. GHG emissions. Further reductions will occur because of "green" or "reduced emission completions" that are being phased-in through the 2012 regulations.⁵ According to EPA's latest GHG Reporting Program: "[In 2013] reported methane emissions from petroleum and natural gas systems sector have decreased by 12 percent since 2011, with the largest

reductions coming from hydraulically fractured natural gas wells, which have decreased by 73 percent during that period. EPA expects to see further emission reductions as the agency's 2012 standards for the oil and gas industry become fully implemented."⁶ These reductions are remarkable, given that a major component of the 2012 standards, the reduced emission completion requirements, only became effective January 1, 2015.

In January 2015, the Administration announced its intent to initiate rulemaking to further reduce methane emissions from oil and natural gas systems, including the production sector.⁷ Specifically, it announced a target of a 40-45 percent reduction in 2012 emissions by 2025. For the production and exploration segment of the oil and natural gas sector, additional regulations are unnecessary. As the Administration observed in its announcement:

In 2012, the Environmental Protection Agency (EPA) laid a foundation for further action when it issued standards for volatile organic compounds (VOC) from the oil and natural gas industry. These standards, when fully implemented, are expected to reduce 190,000 to 290,000 tons of VOC and decrease methane

⁴ U.S. Energy Information Administration, *available at* http://www.eia.gov/dnav/ng/hist/res_epg0_r5302_nus_bcfa.htm.

⁵ In 2012, EPA finalized a Clean Air Act (CAA or Act) Section 111(b) NSPS targeting VOCs emissions from hydraulically fractured natural gas wells. This rulemaking also reduces methane emissions as co-benefit. Methane and VOCs are emitted from oil and natural gas production facilities at the same time from the same equipment. Consequently, reducing one also reduces the other. The effects of the 2012 NSPS are still unfolding.

⁶ Requirements for reduced emission completions on natural gas wells were promulgated in August 2012 but did not become effective until January 1, 2015. Oil and Natural Gas Sector: Reconsideration of Additional Provisions of New Source Performance Standards, 79 Fed. Reg. 79,018 (Dec. 31, 2014) (codified at 40 C.F.R. pt. 60).

⁷ Press Release, The White House, Fact Sheet: Administration Takes Steps Forward on Climate Action Plan by Announcing Actions to Cut Methane Emissions (Jan. 14, 2015), *available at* <u>https://www.whitehouse.gov/the-press-office/2015/01/14/fact-sheet-administration-takes-steps-forward-climate-action-plan-anno-1</u>.

emissions in an amount equivalent to 33 million tons of carbon pollution per year. 8

Over 99 percent of the EPA projected reductions occur from the exploration and production sector. In 2013, exploration and production emissions of methane were 71 million tons of CO_2 equivalent. Consequently, by EPA's own numbers, the 2012 NSPS regulations will reduce emissions by 46 percent. This reduction exceeds the emissions target percentage of the production sector of the oil and natural gas industry.

EPA attempts to argue that its regulations are needed because methane emissions "are projected to increase by about 25 percent over the next decade if additional steps are not taken to reduce emissions from this rapidly growing industry."⁹ Yet, this statement is wholly inconsistent with the experience over the past several years in the exploration and production sector of the industry. This segment has demonstrated that growth in production not only provides more clean-burning, GHG-reducing product, it has been done while reducing methane emissions as the following graphic shows:

$^{8}Id.$

⁹ U.S. Environmental Protection Agency, Fact Sheet: EPA's Strategy for Reducing Methane and Ozone-Forming Pollution from the Oil and Natural Gas Industry (Jan. 14, 2015), *available at* <u>https://www.whitehouse.gov/the-press-office/2015/01/14/fact-sheet-administration-takes-steps-forward-climate-action-plan-anno-1</u>.

Significantly, these reductions in methane emissions have occurred prior to full implementation of the 2012 NSPS.

Moreover, because of the nature of oil and natural gas production, the application of controls on new sources will achieve the Administration's objectives without the need to create extensive existing source regulations. Oil and natural gas production operations differ from other types of manufacturing. After the period of initial production, wells begin to decline – generally referred to as the "production decline curve." And as the production of the well declines, its ability to emit VOCs and methane into the atmosphere also declines. Emissions from these older wells will be a smaller portion of the 1.07 percent of emissions, yet EPA's decision to regulate methane directly under Section 111(b) of the CAA and proposed CTG subjects tens of thousands of existing wells to regulation. IPAA/AXPC questions the cost-effectiveness of the proposed requirements to existing sources. The regulatory burden on state and federal regulators of exposing hundreds of thousands of existing sources is completely overlooked in EPA's proposal.

The declining nature of oil and natural gas wells also differentiates the exploration and production segment of the oil and natural gas sector from other segments further downstream where emissions remain fairly constant overtime. Ultimately, the production from the "new" wells declines to the point where they become "marginal" wells. These are defined as wells that produce 15 barrels/day of oil or less and 90 mscf/d or less of natural gas. Currently, there are over 1.1 million oil and natural gas wells in the United States; approximately 760,000 are marginal wells. However, these small individual wells account for about 20 percent of U.S. oil production and 13 percent of its natural gas production. Consequently, unlike manufacturing facilities where new facilities do not replace existing ones, in the oil and natural gas production industry, the implementation of technology on new wells will rapidly result in its application across the breadth of the industry as new wells become the predominant source of emissions for the industry. This can be understood by looking at past experience as shown in the graphs below:

Natural Gas Wells

As this graphic demonstrates, after 12 years wells subject to the new source regulatory requirements will dominate the production of natural gas, and the remaining wells will be marginal wells with minimal incremental emissions beyond the emissions from sources already subject to regulation. The cost associated with reducing those incremental emissions will be greater than the cost of implementing controls on new or modified sources and will likely make many of the marginal wells uneconomic, causing them to be shut in/abandoned. The opportunity

cost or value of that last production is not offset by the minimal emissions reductions achieved by regulating existing sources.

Oil Wells Oil Wells Drilled in 12-Year Period Oil Producing Wells 2002-2013 600,000 600,000 500,000 500,000 400,000 400.000 300,000 300,000 200,000 200.000 100 860 100.000 002 2003 2004 2005 2006 2007 2008 2009 2010 2011 21 Oil Well Composition Change — 12-Year Period 600.000 500,000 400,000 300,000 200,000 100,000 0 Marg 2005 2005 2007 2008 2008 2008 2018 2018 2011 New wells exceed Past experience nonmarginal demonstrates that wells controlling new sources will manage emissions because over the regulatory target timeframe, these wells will represent the significant emission sources. SOURCE: UNITED STATES PETROLEUM STATISTICS, INDEPENDENT PETROLEUM ASSOCIATION OF AMERICA

A similar pattern exists for oil wells as shown below:

While this analysis is based on past experience, if it were expanded to a 20-year period, it would show a similar trend and demonstrate that the use of new source regulations are more than adequate to address the Administration's interest in reducing methane emissions from the oil and natural gas sector, in general, and the exploration and production segment, in particular. EPA

has failed to adequately account for and justify subjecting existing exploration and production sources to regulation under Section 111 of the CAA or through the CTG.

As Energy In Depth (a research, education, and public outreach campaign supported by IPAA) recently reported, EPA's assumptions regarding methane emissions from the oil and natural gas industry are not supported by EPA's own data.

More specifically, Energy In Depth found:

- EPA projects methane emissions from the oil and natural gas sector will increase over the next decade, but **methane emissions from that sector have declined by more than 22 million metric tons** since 2005.
- Over the past decade, the United States added more than 86,000 new wells, during which methane emissions from petroleum and natural gas systems fell by 11 percent.
- EPA's flawed assumptions on methane emissions raise questions about the agency's costbenefit calculation, and EPA could be **underestimating engineering costs by more than \$10 million**.

• The EPA could also be **overstating the climate benefits of the rule**, since methane emissions may be significantly lower than EPA's projections.¹⁰

As discussed below, EPA's economic justification for it proposed regulations is problematic. But even the past does not support EPA's fundamental assumption that more drilling means more emissions:

EPA has projected that an increase in oil and natural gas activity will result in a 25 percent increase in methane emissions. But since 2005, methane emissions from U.S. oil and natural gas systems have fallen by a greater percentage than the number of new wells drilled.

IPAA/AXPC has repeatedly told EPA that additional regulation is not needed. Market forces drive the industry to minimize emissions. Unlike certain "products" in other industries with "emissions" that are a by-product or negative externality associated with the production, the "emission" of concern to EPA is the very product this industry brings to the market.

¹⁰ Steve Everley, *New EPA Methane Regulations Based on Flawed Emissions Assumptions* (2015), Energy in Depth, *available at* <u>http://energyindepth.org/national/epa-methane-regulations-flawed-emissions-assumptions/</u>. IPAA/AXPC incorporate by reference the entire Energy In Depth article as part of its comments.

II. The Industry's Recent Past is Not Its Prologue – Therefore EPA's Proposed Regulations are Not Justified

EPA justifies its proposed regulations in large part on the last 10 years of growth in the American oil and natural gas industry – perhaps the most dynamic and rapid growth period in the history of the industry:

The EPA has projected affected facilities using a combination of historical data from the U.S. GHG Inventory, and projected activity levels, taken from the Energy Information Administration (EIA's) Annual Energy Outlook (AEO). The EPA derived typical counts for new compressors, pneumatic controllers, and pneumatic pumps by averaging the year-to-year increases over the past ten years in the Inventory. New and modified hydraulically fractured oil well completions and well sites are based on projections and growth rates consistent with the drilling activity in the 2014 Annual Energy Outlook."¹¹

As much as the oil and natural gas sector would like to see that growth rate continue to 2025, it simply will not happen, and the past few years illustrate the cyclical nature of the industry. The price of oil and natural gas has plummeted unlike EPA's hypothetical projections. Operators react quickly to market forces and in many shale plays very few wells are being drilled. For many small, independent operators in various plays, they have not drilled a well in 3 or more years – yet EPA is justifying the cost of the proposed regulations on the most rapid expansion in the history of the industry. The following charts from a recent article by Energy In Depth,¹² based on EIA data, clearly illustrate the impact of market forces:

¹¹ Regulatory Impact Analysis of the Proposed Emission Standards for New and Modified Sources in the Oil and Natural Gas Sector, EPA-452/R-15-002 (Aug. 2015) at 3-9.

¹² Steve Everley, *New EPA Methane Regulations Based on Flawed Emissions Assumptions* (2015), Energy in Depth, *available at* <u>http://energyindepth.org/national/epa-methane-regulations-flawed-emissions-assumptions/</u>.

SOURCE: U.S. Energy Information Administration

EPA's cost-effectiveness analysis of the proposed regulations "applies the monetary value of the saved natural gas as an offset to the" cost of the proposed controls.¹³ EPA then valued 1,000 standard cubic feet (Mcf) of natural gas at \$4.00 for the RIA/cost-effectiveness analysis. The \$4/Mcf assumption was based on EIA's 2014 Annual Energy Outlook forecasted

¹³ Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,617(Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60).

wellhead prices for the lower 48 states in 2020 (\$4.46) and in 2025 (\$5.06). EPA considered the 4/Mcf to be "conservative"¹⁴ – presumably because of the predicted value of natural gas in 2020 and 2025. There are numerous problems with EPA assumptions. First, the New York Mercantile Exchange (NYMEX) settlement price for natural gas in October 2015 was \$2.56 – 36% lower than EPA's assumed value. EPA has repeatedly indicated that it will finalize the proposed methane NSPS by the summer of 2016, and no financial institution is predicting a dramatic increase in natural gas prices between now and then. For those subject to regulations that come into effect within the next year, EPA's "conservative" estimate of \$4/Mcf based on government estimates of what natural gas will cost in 2020 and 2025 is meaningless. IPAA/AXPC appreciates that the "benefit" or value of the natural gas saved by the proposed regulations occurs over the life of the well; however, the emissions from any well are heavily "front-loaded" - with the greatest production, and thus potential emissions, occurring the first few years of the well's life – long before 2020 or 2025. Smaller independents, many conventional well operators, and operators of wells that are marginally economical will not be able to weather the storm until natural gas reaches EPA's conservative value of \$4/Mcf. Wells will not be drilled or will be shut in prematurely, and other companies will simply go out of business because of EPA's erroneous assumption on the price of natural gas. EPA's costeffectiveness analysis for all proposed controls should be based on a price of natural gas that: a) more accurately reflects the price of natural gas when controls will need to be implemented, and b) accounts for the "front loading" of emissions when the price of natural gas is much lower than the \$4/Mcf assumed by EPA.

EPA's assumption of \$4/Mcf natural gas also fails to acknowledge or account for significant regional differences in the price of natural gas. A review of the wellhead price of natural gas in Pennsylvania provides but one of the many dramatic price variations.

¹⁴ Id.

The chart above tracks the PA Price versus NYMEX average prices for the past 4 years and is current through October 2015. The "PA Price" is based on a weighted average of the Dominion South, Leidy, and Tennessee Zone 4 prices reported by Platt's *Inside FERC*. The separation of prices in Pennsylvania from the national index price is driven in large part by the lack of takeaway pipeline capacity and sheer volume of natural gas. The regional variation in price is not accounted for in EPA's cost-effectiveness analysis. Consequently EPA's inflated valuation of the price of natural gas will disproportionally impact certain regions of the country where local or regional factors result in prices that are significantly lower than the national average. EPA's cost-effectiveness analysis must take such significant regional price fluctuations into consideration when evaluating control options.

EPA is proposing regulations so fast that even it cannot keep up with the changing assumptions. Part of EPA's assumption of \$4/Mcf natural gas was based on EPA's proposed Clean Power Plan.¹⁵ However, EPA's final Clean Power Plan changed its "assumptions," and EPA now "believes" renewables will play a greater role in the country's future energy mix and natural gas prices may not reach \$4/Mcf until after 2030 – well beyond the EPA's analysis for the proposed methane NSPS which ends in 2025. As Energy In Depth points out, the changing assumptions have a dramatic impact on the industry:

According to EPA data compiled by the American Wind Energy Association (AWEA), a heavier reliance on renewables could result in <u>natural gas prices that</u> are at least 12 percent lower than what would be expected under EPA's base case projection [for the Clean Power Plan]. EPA also acknowledges in its RIA that a \$1/Mcf change in price of natural gas translates to as much as a \$19 million difference in its cost estimate. In other words, if natural gas prices averaged \$3/Mcf instead of \$4/Mcf, EPA could be overestimating revenue by roughly 24 percent. Based on the current 2012-2015 average natural gas spot price of \$3.44/Mcf, EPA would be overestimating revenue by about \$10.6 million. Under the "high renewables" scenario in the Clean Power Plan, which would depress natural gas prices even further, EPA's overestimate would be even higher.

The additional costs could be devastating for an industry already suffering from a market downturn in commodity prices. An analysis by Oppenheimer & Co., for example, already found that <u>EPA's methane rule could wipe out smaller drillers</u> across the United States.¹⁶

In addition to failing to account for the changed assumptions for the price of oil and natural gas as a result of the Clean Power Plan, EPA has made no effort to account for the impact associated with proposed Ozone NAAQS. For EPA to evaluate the proposed impact of the proposed methane NSPS in a vacuum, ignoring its own significant regulatory initiatives that will have serious impacts on the price of oil and natural gas, as well as the number of entities that will be

¹⁵ Steve Everley, *New EPA Methane Regulations Based on Flawed Emissions Assumptions* (2015), Energy in Depth, *available at* <u>http://energyindepth.org/national/epa-methane-regulations-flawed-emissions-assumptions/</u>.

¹⁶ *Id*.

subject to controls, is arbitrary and capricious. Every mutual fund and investment opportunity contains the standard disclaimer along the lines of – "past performance cannot guarantee future results." The oil and natural gas industry is no different – even without EPA impacting market forces with multiple regulatory disruptions.

III. Now is Not the Time to Introduce a New Model to Justify EPA's Proposed Rules.

The benefits of the proposed rule are estimated using the social cost of methane (SC-CH₄), which has been derived from the approach the United States Government (USG) uses for estimating the social cost of carbon (SCC). However, unlike the USG's SCC which has undergone formal public comment and review, EPA's selected value for SC-CH₄ in this proposed rulemaking is arbitrarily taken from one scientific report¹⁷ that attempts to find an equivalent SC-CH₄ from the SCC, and for which EPA only requested a "peer review" not formal public review and comment. The "peer review" was only concluded in 2014 and discussed as the basis for EPA's cost-effectiveness analysis for the first time in the RIA.¹⁸ The model has not been evaluated by Office of Management and Budget. Providing industry a mere 60 days (plus 17) to evaluate and comment on what amounts to "new math" is inadequate. Also, the selected value of SC-CH₄ used for the Benefit-Cost Analysis in the RIA is based on an arbitrarily selected discount rate of 3 percent, which also was not proposed for public review and comment before being used to justify this proposed rulemaking.¹⁹ Even though now EPA belatedly "seeks comments on the use of these directly modeled estimates, from the peer reviewed literature, for the social cost of non-CO₂ GHGs \ldots ,"²⁰ such a request, after EPA has already used its arbitrary value for SC-CH₄ to justify methane emissions controls on numerous methane emissions sources, is arbitrary and capricious. The only proper and legal way for EPA to apply a SC-CH₄ value to methane emissions reductions for proposed rulemakings is to publish a proposal for a SC-CH₄ value (based on scientific evidence and its arguments for a certain discount rate), take public comments on that proposed value, and finalize the value for future rulemakings. Otherwise, EPA can arbitrarily use one value of SC-CH₄ to justify controls on methane emissions from one industrial sector source and then turn-around later and use some other arbitrary value for another industrial sector source, all presumably justified by taking comment on the arbitrary value already used to justify the proposed regulations.

¹⁷ Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,655 (Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60).

¹⁸ Regulatory Impact Analysis of the Proposed Emission Standards for New and Modified Sources in the Oil and Natural Gas Sector, EPA-452/R-15-002 (Aug. 2015).

¹⁹ Exacerbating the arbitrary nature of the 3% discount rate for benefits, EPA inconsistently and inappropriately selected a 7% discount rate for the cost to industry. EPA's unjustified use of different discount rates arbitrarily and capriciously overstates the benefits compared to the costs.

²⁰ Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,656 (Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60).

IV. Overarching Comments Particular to the Proposed NSPS for Methane, Subpart OOOOa.

In Sections V and VI of the preamble to the proposed NSPS, EPA dedicates considerable verbiage attempting to justify the need and its legal authority to regulate methane from sources in the oil and natural gas sector. IPAA/AXPC disagrees with both the need and EPA's authority to regulate methane for the reasons set forth below.

EPA's interest in regulating methane is clearly a political decision rather than an environmentally driven decision. Its genesis can be easily seen in the strident demands from anti-fossil energy groups with agendas not to manage industrial emissions but to prevent the development of oil and natural gas. Groups like the Sierra Club have policies that are clear:

There are no "clean" fossil fuels. The Sierra Club is committed to eliminating the use of fossil fuels, including coal, natural gas and oil, as soon as possible . . . Methane released via extraction and transport is 86 times more potent as a greenhouse gas than CO_2 over a 20-year time frame. The climate-disruption impacts from methane and carbon dioxide emitted by extraction, transport and burning clearly point to the urgent need of keeping fossil fuels in the ground.²¹

This group, along with others, made their demands known to the EPA in multiple meetings and letters, including a December 2013 letter stating the following:

We commend EPA for updating its VOCs performance standards for this industry in 2012, but the job is far from finished. While some reductions in methane emissions will be achieved as a co-benefit of these 2012 rules, many emission sources are not adequately addressed, such as the vast network of equipment that was installed before those rules went into effect. EPA needs to take immediate steps to produce regulations to directly reduce methane pollution from new and existing equipment from this industry.²²

Once demanded, the issue of direct methane regulation became the pivot point for development of the current regulatory proposals. As discussed below, the drive for direct methane regulations for the oil and natural gas sector is driven by atmospherics and philosophy, not science or increased environmental benefit.

²¹ Sierra Club to Big Oil: There are no 'clean' fossil fuels. Sierra Club (Apr. 21, 2015) available at http://angeles.sierraclub.org/news/blog/2015/04/sierra_club_big_oil_there_are_no_clean_fossil_fuels.

²² Earthworks, *et al.* Interior Secretary Jewell, EPA Administrator McCarty to Curb Methane Emissions from Oil and Gas Industry, Earthworks (Dec. 5, 2013) *available at*

https://www.earthworksaction.org/library/detail/open letter to interior secretary jewell epa administrator mccart hy_to_curb#.VmHY97Eo74Y.

In reality, EPA was forced to propose regulations to satisfy a political agenda that is governed more by what "we [EPA] believe that the industry can bear . . . and survive."²³ EPA's decision to promulgate methane standards from the exploration and production segment of the oil and natural gas sector is arbitrary and capricious. EPA states that it "believe[s] it is important to regulate methane from the oil and gas sources already regulated for VOC emissions to provide more consistency across the category"²⁴ Yet in the very same sentence EPA admits "that the best system of emission reductions (BSER) for methane for all these sources is the same as the BSER for VOC."²⁵ EPA continues that the BSER for the previously unregulated sources is the same for VOCs and methane. Simply put, the controls on the targeted emissions sources to reduce VOCs are the same as the controls to reduce methane – no more, no less. The "gain" – according to EPA – of adding yet another Subpart of regulations to the already extensive 40 C.F.R Part 60 is "consistency." What EPA chooses to ignore in its preamble discussion is the inevitable "loss" or cost to the industry associated with the regulation of existing sources under Section 111(d).

EPA is silent as to its "beliefs" on whether the industry can "survive" the cost and burden of regulation of existing sources under Section 111(d). This silence is notable and troubling. Clearly, since EPA demonstrates that the technologies used to regulate methane emissions are identical to those for VOC emissions, EPA's choice to expand its regulations to directly regulate methane can only be interpreted as opening a potential pathway to Section 111(d) regulations as the anti-fossil energy organizations demanded. And, while EPA fails to even mention Section 111(d), it must certainly know – based on the demand that existing methane sources must be regulated – that it will face efforts to force such regulation. EPA will surely respond that it will conduct the necessary cost-benefit analysis when it is "forced" to promulgate existing source standards under Section 111(d). Without debating the legalities as to EPA's duties under Section 111(d), this Administration has demonstrated time and time again its propensity to feign resistance to non-governmental organizations' (NGO) "demands" and enter into consent decrees with unreasonable short time periods to promulgate regulations. The irony is that EPA's rationale assumes that the underlying Section 111(b) regulations were necessary in the first place. What has the environment gained (above the benefits gained from VOCs) from regulating methane emissions from exploration and production directly? Nothing. EPA has admitted it. The controls are the same – equally efficient at controlling VOCs and methane. The cost? EPA relies heavily on its original cost-effectiveness analysis for the Subpart OOOO VOC regulations finalized in 2012 and engages in additional analysis discussed in Section VIII of the preamble, concluding that the proposed controls "for methane" are also cost-effective. But nowhere does EPA take into account the cost to the industry associated with the regulations that will likely be forced upon existing sources in this source category. Despite all of the complicated calculations and analyses, the simple fact remains that the controls for VOCs and methane from the targeted sources are the same. There is no demonstrated "need" or unique benefit associated with an additional set of standards specifically for methane. The true cost of the proposed methane

²³ Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,629 (Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60)

²⁴ *Id.* at 56,595.

²⁵ Id.

regulations is incomplete and unknown without considering the cost associated with regulating existing sources under Section 111(d).

"Consistency across the category" is an insufficient justification. Historically, EPA has tailored new source performance standards to subcategories or segments within a larger, overarching category. One needs to look no farther than Subpart D and its progeny for Steam Generating Units or Subpart E for Municipal Waste Combustors. EPA has shown it can be very creative in tailoring requirements to subcategories or segments within a listed category. Since the Administration first hinted at regulating methane directly from the exploration and production segment, IPAA/AXPC has advocated that such direct regulation was unnecessary, as the controls for VOCs were exactly the same as for methane. EPA acknowledged as much in Section VII in the preamble and stated "[w]e anticipate that these stakeholders will express their views during the comment period."²⁶ IPAA/AXPC questions the appropriateness of EPA's decision to essentially ignore a central premise of two federal trade associations that represent approximately 54% of oil and 85% of natural gas exploration and production capacity of this country. Is it appropriate for IPAA/AXPC to guess as to EPA's reasoning and justification? Much of EPA's 67-page preamble is dedicated to justifying its legal basis for regulating methane directly and the cost-effectiveness of the proposed controls. It fails to address in any meaningful way why it is necessary or justified to promulgate methane standards from the exploration and production segment. EPA's justification boils down to: 1) EPA assumes it is has the legal authority to do so; 2) EPA has placed a high value on "consistency" within the source category; and 3) EPA "believes" the industry can "survive." EPA is on much stronger legal footing addressing segments or subcategories differently within the oil and natural gas sector than asserting it does not need a separate endangerment finding for methane. EPA's insistence, without explanation, on promulgating methane standards for exploration and production sources, when the controls are exactly the same, needlessly increases the regulatory burden on everyone – the regulated and the regulator. IPAA/AXPC should not have to guess until the rule is finalized and potentially litigate an issue that has been clearly articulated to EPA, the Small Business Administration, and the Office of Management and Budget long before the rule was even proposed.

In Section V and VI, EPA indicates it is responding to and granting a Petition for Reconsideration associated with the 2012 NSPS Subpart OOOO for VOCs which requested the promulgation of NSPS for methane. The key elements outlined as EPA's reasoning for granting reconsideration are:

- "the wealth of additional information now available to us . . ."²⁷
- "[t]he oil and natural gas industry is one of the largest emitters of methane, a GHG with a global warming potential more than 25 times greater than that of carbon dioxide."²⁸

²⁶ *Id.* at 56,609.

²⁷ *Id.* at 56,599.

 $^{^{28}}$ *Id*.

- "because the EPA is not listing a new source category in this rule, the EPA is not required to make a new endangerment finding with regard to oil and natural gas source category in order to establish standards of performance for the methane from those sources."²⁹
- "a number of major scientific assessments have been released that improve understanding of the climate system and strengthen the case that GHGs endanger public health and welfare for current and future generations."³⁰

EPA then dedicates approximately 10 pages of the preamble to defending their position that a separate endangerment finding strictly for methane is not needed (and backfilling in case they are wrong), making the case for global climate change from GHGs, and presenting various charts on U.S. methane emissions. Unlike the remaining sections of the preamble (approximately 55 pages), in which EPA seeks specific comments on particular issues at least 50 different times, EPA did not seek comment once in Sections V and VI.

While IPAA/AXPC has not attempted to take issue with or refute every inaccuracy or assertion contained within these sections of the preamble, EPA's key elements are addressed briefly below:

- IPAA/AXPC agrees there is a wealth of additional information much of it taking issue with anthropogenic global warming. A cursory review of the website Watts Up With That, <u>http://wattsupwiththat.com/</u>, reveals the science is not "settled" as EPA would have one believe.
- While EPA alleges that the oil and natural gas sector is one of the "largest emitters of methane", EPA's own numbers illustrate that in 2013, the oil and natural gas sector accounted for 2.22% of the Total U.S. GHG Inventory.³¹ And as stated earlier, the exploration and production segment is only 1.07% of that 2.22%. The oft-quoted greenhouse gas multiplier is subject to manipulation based on the timeframe used to make the carbon dioxide comparison, and the "legacy warming from fugitive methane is minuscule compared to that of carbon dioxide."³²
- The adequacy of EPA's endangerment finding is far from settled and will certainly be subject to legal challenge upon final promulgation of this rule if EPA persists with its intention to regulate methane directly.³³
- In supporting its claim that EPA better understands climate change, it cites the Intergovernmental Panel on Climate Change's (IPCC) 2013-2014 Fifth Assessment Report (AR5). Many of these "citations" or statements to support EPA's position are

²⁹ *Id.* at 56,601.

³⁰ *Id.* at 56602.

³¹ *Id.* at 56,608.

³² Elizabeth A. Muller and Richard A. Muller, *The Facts About Fugitive Methane*, Centre for Policy Studies (Oct. 2015) *available at http://www.cps.org.uk/files/reports/original/151022155129-TheFactsofFugitiveMethane.pdf*.

³³ David Yaussy and Elizabeth Turgeon. Unringing the Bell: Time for EPA to Reconsider Its Greenhouse Gas Endangerment Finding, 116 W.Va. L. Rev. 1007 (2014).

from the Summary for Policy Makers, which was written by the policy makers, not the scientists who authored the report.³⁴ Judith Curry, former Chair of the School of Earth and Atmospheric Sciences at the Georgia Institute of Technology, evaluated and commented on the AR5, not the Summary for Policy Makers, and noted various factors that evidence a weakening of the case for anthropogenic global warming:

- Lack of warming since 1998 and growing discrepancies with climate model projections
- Evidence of decreased climate sensitivity to increases in CO₂
- Evidence that sea level rise from 1920-1950 is of the same magnitude in 1993-2012
- Increasing Antarctic sea ice extent
- Low confidence in attributing extreme weather events to anthropogenic global warming.³⁵
- EPA also relies heavily on the U.S. Global Change Research Program's (USGCRP) 2014 National Climate Assessment, Climate Change Impacts in the United States (NCA3), to support its alleged climate change impacts ranging from decreased Artic summer sea ice to increased sea levels to drier/more intense storms, as well as greater impact to children and the elderly.
 - Studies not cited by EPA demonstrate no significant changes or deviations from cyclical patterns in the quantity of ice.³⁶
 - As to the frequency and intensity of storms, other studies not cited by EPA raise questions regarding storm predictability: "October marks a continuation of a record-long major hurricane (Category 3 or stronger) landfall drought in the United States. The last major hurricane to make landfall in the U.S. was Wilma on October 24, 2005. This major hurricane drought surpassed the length of the eight-years from 1861-1868 when no major hurricane struck the United States' coast. On average, a major hurricane makes landfall in the U.S. about once every three years. The reliable record of landfalling hurricanes in the U.S. dates back to 1851."³⁷ "The bar [see footnote] charts

³⁷ National Oceanic and Atmospheric Administration, National Centers for Environmental Information, State of the Climate: Hurricanes and Tropical Storms for October 2015 (Nov. 2015) *available at* https://www.ncdc.noaa.gov/sotc/tropical-cyclones/2015 (Nov. 2015) *available at* https://www.ncdc.noaa.gov/sotc/tropical-cyclones/2015 (Nov. 2015) *available at* https://www.ncdc.noaa.gov/sotc/tropical-cyclones/201510. While other ranking metrics for hurricane's are being developed, the National Hurricane Center for the National Oceanic and Atmospheric Administration and EPA continue to regularly rely on an cite to the Saffir-Simpson Hurricane Wind Scale to compare the potential impacts of hurricanes.

³⁴ Wim Rost, $IPCC \neq Science \leftrightarrow IPCC = Government$, Watts Up With That (Nov. 29, 2015) available at <u>http://wattsupwiththat.com/2015/11/29/ipcc-science-ipcc-government/</u>.

³⁵ Judith Curry, *IPCC AR5 Weakens the Case for AGW*, Climate Etc. (Jan 6, 2014) *available at* <u>http://judithcurry.com/2014/01/06/ipcc-ar5-weakens-the-case-for-agw/</u>.

³⁶ <u>http://ocean.dmi.dk/arctic/plots/icecover/icecover_current_new.png;</u> <u>http://nsidc.org/data/seaice_index/images/daily_images/S_stddev_timeseries.png</u>

below indicate there has been little trend in the frequency of the stronger tornadoes over the past 55 years."³⁸

The title of Section V of the preamble is "Why is the EPA Proposing to Establish Methane Standards in the Oil and Natural Gas NSPS?" EPA's stated concerns are ostensibly laudable. However, nothing set forth in Section V or Section VI of the preamble justifies or necessitates separate methane NSPS from the exploration and production sector.

A. Consistent with the Clean Air Act, State Programs Should Control

The CAA is structured such that states should have primacy and be primarily responsible for compliance with the requirements of the Act. Many of the states with the most active shale plays have implemented state regulations to address many of the emissions sources targeted in the proposed Subpart OOOOa regulations. States with state permitting programs and/or State Implementation Plans (SIPs) that contain limits on sources that are legally and practically enforceable should be deemed sufficient for overlapping and duplicative requirements in Subpart OOOO and the finalized version of Subpart OOOOa. EPA should defer to existing state regulations to the greatest extent possible to deem compliance with state regulations on the same sources as constituting compliance with the final Subpart OOOOa regulations. Duplication and inconsistency between state and federal regulations simply add to the cost of compliance with little to no additional benefit to the environment. To the extent EPA does not allow for such provisions, EPA should demonstrate that the duplicate or "more stringent" regulations that EPA is promulgating are incrementally cost-effective: meaning that the cost associated with the duplicative or inconsistent federal control requirement is cost-effective based on the incremental environmental benefit above the state regulation already in place or deem compliance with the state regulations as compliance with Subpart OOOOa. EPA must justify with an *incremental* cost and benefit analysis any proposal to impose additional federal regulations that it deems more stringent than existing state regulations.

B. Fugitive Emissions at Well Sites and Compressor Stations

Managing fugitive emissions or "leaks" from the oil and natural gas sector appeals to common sense. Leaks associated with natural gas operations represent safety concerns, negative impacts to the environment, and are wasteful from an economic standpoint. The industry has relied on audio/visual/olfactory (AVO) inspections for many years, and only recently has the industry focused considerable attention on technological advances to detect leaks. It is an emerging process – both in terms of technology and methodology (regulatory and corporate management). EPA's preamble bears this fact out with the number of specific requests for "comment" on the leak detection aspect of the proposal. IPAA/AXPC supports, in concept, the ability to satisfy the leak detection and repair (LDAR) requirements of the proposal with an appropriate "corporate fugitive monitoring plan," but a 60-day comment period (plus a random 17 days halfway through the comment period) is not enough time to create and implement such a

³⁸ National Oceanic and Atmospheric Administration, National Centers for Environmental Information, Historical Records and Trends, *available at* <u>https://www.ncdc.noaa.gov/climate-information/extreme-events/us-tornado-climatology/trends</u>.

program. Additionally, recent data and studies demonstrate that production fugitive emissions are characterized by a few sources ("fat tails") representing the overwhelming majority of emissions.³⁹

A handful of states are taking the lead on creating regulatory frameworks, each of which is different, and none of which follows the proposed EPA framework. Experience with the state programs is indicating that correction of fat tail emissions results in effective management of fugitive sources and, once corrected, the need for full-blown inspections/surveys more often than an annual frequency is unjustified. Even the states with the most aggressive LDAR programs are not focused on quantifying the total amount of methane "saved." The very nature of fugitive emissions makes it very difficult to quantify how much gas is being "saved." It is not as simple as a single point source with consistent flow where one can easily measure the emissions before and after controls are "bolted on" a stack or emission point. The component count at most facilities is likely in the hundreds to thousands, with only a very small percentage of the components leaking. For those that are leaking, the quantity of gas leaking varies considerably. Nonetheless, EPA crunched some numbers in a hypothetical world and assigned some value to the natural gas that is saved. In reality, very few companies will realize any change in the sales meter pre- and post-LDAR. The savings are largely illusionary to the average operator. The value of the natural gas "saved" through the LDAR programs is highly speculative. In addition, EPA did not account for the size of the facility when estimating the percent savings. EPA's percentage saved calculations are based on Colorado's regulations and related data. Colorado's 80% reduction, which EPA adopts, is based on monthly inspections for facilities with less than 50 tons per year. EPA assumes, with no additional support, that their proposed regulations can achieve an 80% reduction from quarterly inspections for all facilities, regardless of size. IPAA/AXPC questions the validity of EPA's cost-effectiveness analysis for its proposed LDAR regulations.

EPA should withdraw the proposed LDAR NSPS because it has not been developed based on the emerging experiences with fugitive emissions management programs, it locks in a technology approach that may be cost ineffective as experience with state programs evolves, and it would stifle the development of better approaches. Instead, EPA should work with states to learn from their programs and provide for a flexible voluntary fugitive emissions program in the Methane Challenge that would build a basis for a cost-effective NSPS in the future, if one is needed. At a minimum, implementation of any program should be delayed and EPA should work with industry to establish the necessary elements of a corporate fugitive monitoring plan that companies could adopt and customize to meet their particular needs while satisfying EPA's LDAR requirements. This performance-based approach would be the most effective and efficient.

Other than the handful of companies that provide the optical gas imaging (OGI) technology, industry is united in its position that EPA should not select or dictate the technology for detecting leaks. The concept behind NSPS is setting a performance standard that must be

³⁹ David T. Allen, *et al.* Measurements of methane emissions at natural gas production sites in the United States, Proceedings of the National Academy of Sciences of the United States of America (Aug. 19, 2013) *available at* <u>http://www.pnas.org/content/110/44/17768</u>.

met – not dictating a particular technology. Dictating a particular technology stifles innovation. There are approximately a half dozen or more additional technologies/techniques that are being marketed and/or developed including, but not limited to: tunable diode laser absorption spectroscopy; 3-channel non-dispersive gas correlation infrared spectrometer; mid-infrared laser-based differential absorption light detection and ranging; simultaneous-view gas correlation passive infrared radiometer; acoustic gas lead detectors; and remote methane leak detectors. These are in addition to the existing Method 21 procedure that some companies find workable and preferable. The need and motivation to "build a better mouse trap" will cease to exist if EPA dictates the technology, and there is no reason for EPA to select one technology.

OGI/forward looking infrared (FLIR) technology suffers from numerous limitations. Perhaps most importantly, it is not inherently safe – if not used properly on site, it could cause an explosion. Additionally, the results of the camera, the "pictures", are difficult to interpret and subject to misinterpretation, e.g., what appears to be a leak could simply be a heat plume. These problems are exacerbated in windy and/or cold conditions that are prevalent in a number of the shale plays. The technology is prohibitively expensive to smaller operators, and there is a limited supply of qualified service providers that can afford the camera. Even for the larger companies, at approximately \$120,000 a camera, there will be a limited supply. For companies with diverse geographic locations, it will be difficult to comply with the short survey timeframes set forth in the proposal. The proposed regulations also require survey pictures to contain GPS coordinates. Some of the cameras do not have that function, thus requiring another device to comply with the regulations. Finally, the OGI technology is not a quantitative tool – it is not capable of determining how much natural gas is leaking.

As discussed above, a number of states are taking the lead on LDAR programs and are learning how to effectively and efficiently implement controls and administer surveys. Despite repeated requests by IPAA during the Small Business Advocacy Review Panel process and other trade association requests for EPA's proposal to be consistent with and not duplicative of existing state LDAR programs, EPA's proposal runs roughshod over existing state programs. Inconsistencies and duplication in the proposed regulations and existing programs are burdensome, inefficient and costly – especially to small entities and independent operators. IPAA/AXPC specifically incorporates by reference the comments on the NSPS proposal of Anadarko which highlight the inconsistencies between the proposed Subpart OOOOa and existing regulations in Colorado and Pennsylvania. EPA's proposed regulations essentially punish states and operators within those states that proactively moved to address fugitive admissions. Such an approach does not make for sound policy. States with existing programs should be deemed sufficient, and compliance with the state program should be deemed as compliance with the finalized federal program. This is not a new concept in the context of EPA's NSPS for the oil and natural gas industry, and EPA should revise the proposed regulations to model the exemption for storage vessels in Subpart OOOO and deem legally and practically enforceable state LDAR programs to suffice for the proposed federal regulations. Such revisions would greatly reduce the regulatory burden for sources located in states that have proactively addressed fugitive emissions from the oil and gas sector. To the extent a party (whether EPA or a third party) believes an existing state program is inadequate, the burden should be placed on the entity making the allegation, and EPA should establish a process to address the complaint.

Additionally, consistent with the CAA, the state programs should control, and EPA should implement procedures in the final regulations for states to submit for approval a state-based LDAR program that is deemed sufficient to satisfy EPA's final LDAR requirements.

Another issue advocated by IPAA/AXPC and/or member companies prior to publication of the proposed rule was to not base LDAR requirements on arbitrary component count or percentage of components leaking at a given site – yet that is exactly what EPA proposed. EPA suggests that its proposal, which bases the frequency of surveys on the percentage of leaking components, provides an "incentive" for companies to be more vigilant in their identification and repair of leaks. As discussed above, the incentive to identify and repair leaks already exists, as there is a strong safety and economic incentive. EPA's proposal based on percentage of leaking components creates a recordkeeping nightmare. The regulations are less than clear as to what constitutes a "facility" in terms of where to draw the line and stop the component count. As a result of the ambiguity in the proposal, it is difficult to evaluate if EPA's assumptions on components per well count are accurate. There is tremendous variability in the number of wells and types of equipment on well sites. For EPA to base its cost effectiveness on a "model well pad" is problematic. Member companies report component counts in the hundreds to thousands of components. Such a wide range is in part, a function of lack of clarity in the regulations and also calls into question the accuracy of EPA cost-effectiveness assumptions on a model plant. If EPA persists with a percent-leaking methodology, the regulations need to be clarified on what components are to be counted and how to define the limits of the facility for the component count. EPA's own evaluation concluded that quarterly surveys of the intensity proposed are not cost-effective. Yet, if more than 3% of the components are leaking, the proposed regulations require quarterly surveys. If quarterly surveys are not cost-effective, having more than 3% of the components leaking does not somehow make the quarterly surveys become cost-effective. Additionally, there is no direct correlation between the number of leaking components and quantity of emissions, so basing the frequency on the percentage of leaking components does not necessarily mean the program will be more effective at preventing fugitive emissions. While there is no direct correlation between the number of components and quantity of emissions, the component count/percent leaking ratio directly impacts the recording keeping requirements again with no demonstrated reduction in emissions. It is just more paperwork compliance for operators.

Furthermore, leaks are often related to some sort of malfunction and once fixed, stay fixed such that there is no need or rational basis to increase the survey frequency. As EPA discussed in the preamble, experience with the state programs demonstrates there are "gross emitters" or "super emitters" that represent a very large percentage of the overall fugitive emissions profile (consistent with the fat tail issues discussed above). Preliminary information from companies with operations in states with aggressive LDAR programs already in place indicates treating every component "equally" is an inefficient use of limited resources. This information suggests that components subjected to constant or frequent vibration (such as components associated with a compressor) are much more likely to have leaks than say, threaded connections. And in terms of total component most likely to leak at the relatively few compressors. Even if it is difficult to predict "gross emitters" or "super emitters" at any given

facility, the knowledge gained from sources within states with existing LDAR programs suggests that treating all components equally and basing the frequency of surveys on leaking component percentages is inefficient from an emissions reduction perspective and extremely burdensome and costly – especially to small entities. Again, more time to craft a regulatory program designed to identify and repair gross emitters would be preferred by IPAA/AXPC.

Basing the frequency of surveys on the percent of components leaking exemplifies that EPA is largely guessing at what constitutes an appropriate LDAR program. EPA should not rush to judgment and instead learn from the state programs to determine the most effective and efficient way to reduce leaks. Alternatives include a performance-based approach such as that in Wyoming, basing the survey frequency on the size of the facility or the quantity of emissions leaked or perhaps a combination of a more technology-based annual survey with periodic AVO "inspections" between annual surveys. If EPA persists with the percentage-leaking-component approach, flexibility should be built into the program that companies could commit to semi-annual surveys and not be subject to fluctuation from quarterly to annual surveys based on the number of components leaking. For some companies, the ability to plan for semi-annual reporting without the risk of quarterly monitoring would be more beneficial than the changing requirements and potential cost saving of annual surveys to an annual basis might be beneficial. Sources should be given the flexibility to choose. Flexibility in complying with the LDAR program will help reduce the cost and burden.

Individual components that are to be included for "fugitive" emissions monitoring must be better defined and differentiated from components that are designed to emit a certain amount of natural gas under certain circumstances. Further, components of the storage vessels, e.g., closed cover/vent/control systems, already covered under Subpart OOOO for storage vessels should not be subject to additional requirements. As some states have done, EPA should more clearly define and exclude components that are designed to release pressure for safety reasons, e.g., thief hatches and enardo valves.

Dictating a particular technology (OGI/FLIR) and then requiring the initial survey be conducted within 30 days (and repaired within 15 days) is an unreasonably tight time period – especially for smaller entities and operations with disperse and remote locations. These timeframes should be extended to 60 and 30 days, respectively. If EPA persists with the unrealistic time frames, a mechanism allowing for a "variance" on the time frames when certain circumstances exist should be built into the regulations. Even with companies with the resources to purchase a camera, their operations may be geographically dispersed or weather conditions are uncooperative such that they cannot realistically get from one location to the other. Smaller entities and some independent operators who cannot afford the dictated technology are then at the mercy of the market to comply within 30 days. Especially during the early implementation of the new rules, many sources are likely to incur enforcement/liability through no fault of their own due to an inability to purchase the technology or hire service providers with the necessary capabilities.

EPA's cost-effectiveness for the proposed LDAR program requirements is fundamentally flawed because it merely looks at the cost of conducting the survey and fails to accurately

account for the increased record-keeping and reporting requirements. EPA's analysis is myopically focused on a straight up comparison of "cost-effectiveness" for semi-annual surveys versus annual and opts for semi-annual requirements because the relative cost-effectiveness is the same: \$2,475 for annual versus \$2,768 for annual under the single pollutant approach at the well site.⁴⁰ EPA conducted similar comparisons for the multi-pollutant approach at the well site (as well as both comparisons at a compressor station).⁴¹ In every instance the annual survey was more cost-effective but EPA selected the semi-annual surveying because the cost/ton removed was similar. There are two problems with that philosophy. First – in selecting the semi-annual requirement, EPA basically double the cost of the requirement to industry. Second, the theoretical or modeled additional reduction in emissions is a very small percentage of the overall emission reductions associated with the proposed regulations. The additional cost associated with the annual survey requirement is substantial while the increased benefit to the environment is minimal. The additional regulatory burden will be disproportionately felt by small entities. The proposed LDAR requirements basically require all companies, regardless of size, to implement costly information systems to track and monitor compliance. For example, one of the larger, more sophisticated operators with a data management system already in place incurred an additional \$10,000 in external costs associated with developing new or revised software, and an additional \$37,000 associated with internal set-up costs and employee time focused on implementation. These costs were associated with complying with Colorado's LDAR program in a small gas field of 174 wells and, as indicated, were in addition to an existing management system at an estimated cost of \$80,000 annually. It does not appear that costs such as these were considered in EPA's cost-effectiveness analysis. EPA's proposed requirements appear to be based on what is required at natural gas plants, and expanding that level of detail to remote, unmanned production sites is inappropriate. Such level of detail is not warranted nor has the cost been adequately justified – especially over the life of the well. The majority of the "benefit" associated with the surveying is on the initial startup of a well (or startup after modifications). It is impossible to calculate an accurate annual gas recovery rate over the life of a well site.

The new record-keeping requirements associated with the LDAR are particularly burdensome to smaller operators with limited staff. For example, the preamble provides limited to no justification for requiring the date-stamped digital photograph. If EPA retains the burdensome record-keeping requirements, companies should be allowed to keep the records on site or at a regional field office and produce them upon request. Companies should not be required to submit electronically or manually to the permitting agency. EPA requested comment on "ways to minimize recordkeeping and reporting burden." As discussed above, EPA should evaluate existing state requirements and liberally deem them sufficient for purposes of Subpart OOOOa and establish a mechanism for states to implement their own programs that supersede and satisfy Subpart OOOOa.

⁴⁰ Oil and Natural Gas Sector: Standards for Crude Oil and Natural Gas Sector: Standards for Crude Oil and Natural Gas Facilities – Background Technical Support Document for the Proposed New Source Performance Standards 40 CFR Part 60, subpart OOOOa (Aug. 2015) (hereinafter, TSD), at Table 5-14.

⁴¹ *Id.* at Tables 5-15, 5-17, 5-18.

IPAA/AXPC supports the limited exclusions from the LDAR requirements that EPA has proposed but requests certain clarifications and expansion of the exclusions. Excluding low production well sites - defined as the "average combined oil and natural gas production for the oil and natural gas production for the wells at the site being less than 15 barrels of oil equivalent (boe) per day averaged over the first 30 days of production"⁴² -- is extremely helpful for small entities and smaller independent operators. IPAA/AXPC understands the 15 boe is also an "off ramp" - that is, when a well drops below 15 boe, it is no longer subject to the LDAR requirements. IPAA/AXPC requests the regulatory language be revised to indicate that when a well drops below 15 boe, based on a 30-day average production, the LDAR requirements no longer apply. EPA should provide an additional exclusion for well sites with component counts below EPA's model well site: below 548 components for gas well sites and below 135 components for oil well sites should be excluded from the LDAR requirements.⁴³ EPA concluded that it is not cost effective to implement the proposed LDAR requirements on sites with lower well component counts and therefore those well sites should be excluded. Such exclusion would help all producers but would have greatest benefit to small entities that are likely to have smaller well sites. IPAA/AXPC also supports EPA's proposed exclusion for well sites with extremely dry gas where only the wellhead exists and there is no "ancillary equipment." IPAA/AXPC requests clarification that a meter and drip present at the well site do not constitute "ancillary equipment." Finally, in response to an EPA request for comment, IPAA/AXPC suggests that the LDAR requirements should only apply to those components that are directly connected to the fractured, refractured, or added well and should not apply to tank batteries or other equipment off the well pad which may receive fluids from the fractured, refractured or added well.

C. Oil Well Reduced Emission Completions

As with the proposed LDAR requirements, in its rush to promulgate regulations aimed at additional sources of VOCs and methane, EPA assumed that reduced emission completions (RECs) on oil wells are essentially the "same" as RECs on natural gas wells. Unlike a natural gas well, where the price of natural gas dictates many operational decisions, the economic driver for oil wells is the price and volume of oil – not natural gas. When EPA promulgated Subpart OOOO regulations for VOCs and RECs on natural gas wells, EPA indicated it did not have enough information to determine if oil well RECs were cost-effective.⁴⁴ The cost-effectiveness of oil well RECs was also raised by EPA in the Methane "White Papers" released on April 15, 2014.⁴⁵ IPAA/AXPC and individual member companies submitted comments on EPA's oil well

⁴² Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,612 (Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60).

⁴³ TSD at Table 25-1.

⁴⁴ Oil and Natural Gas Sector: New Source Performance Standards and National Emission Standards for Hazardous Air Pollutants Reviews, 77 Fed. Reg. 49,490 ,49516 (Aug. 16, 2012)

⁴⁵ U.S. Environmental Protection Agency, Office of Air Quality Planning and Standards, *Oil and Natural Gas Sector Hydraulically Fractured Oil Well Completions and Associated Gas during Ongoing Production* (Apr. 2014), *available at* <u>http://www3.epa.gov/airquality/oilandgas/2014papers/20140415completions.pdf</u>.

REC White Paper - identifying concerns with the cost-effectiveness of RECs for oil wells.⁴⁶ EPA's preamble discussion in Section VII of the proposed standards for oil well RECs makes a general reference to the Technical Support Document (TSD) for the current proposal in terms of justifying its best system of emissions reduction determination, but there is no updated cost/benefit data cited in the proposal. The citations refer back to the "2012 NSPS evaluation." It appears EPA has failed to cite any new or additional information collected since the 2012 evaluation to support the cost-effectiveness of the proposed oil well REC requirements. The economics of natural gas RECs are different and do not support oil well REC requirements.

Based on the preamble discussion of undertaking of an oil well REC, EPA assumes the process is essentially the same, but this is not necessarily the case. While certain wells will have relatively clear initial and separation flowback stages like natural gas wells, there are instances where there is no separation flowback stage owing to the lack of gas or quality of gas such that operation of a separator is not feasible. On certain wells, the initial flowback stage is followed by directing the flowback immediately into the production battery. Perhaps more so than with RECs on natural gas wells, the various stages of flowback on oil wells can be difficult to clearly delineate, and the ability to utilize a separator is a function of engineering judgment. IPAA/AXPC supports the concept of identifying two stages of flowback, with no control placed on the associated gas with oil well completions during the initial flowback stage. However, there will be situations where certain oil well completions will not experience a separation flowback stage.

In the preamble discussion of the REC requirements for both subcategory 1 and subcategory 2 wells, EPA expressed a clear intention to allow for venting of emissions in lieu of combustion during periods when the flowback gas is noncombustible.⁴⁷ This intent is particularly important for completions utilizing inert gas, such as nitrogen or nitrogen foam, instead of water as the medium for the fracturing process. The inert gases present in the flowback make the gas, for a period of time, "not of salable quality" and technically infeasible. The relevant provisions of the proposed regulations at 40 C.F.R. 60.5375a(a)(3) and 40 C.F.R. 60.5375a(f)(2) should be modified at the end of the provision to allow for venting when "*it is technically infeasible due to inert gas concentration.*" The addition of this phrase at the end of the current proposed language would eliminate any ambiguity as to EPA's intent.

IPAA/AXPC agrees that the feasibility of oil RECs should take into consideration the availability of gathering lines and that it is not as simple as a linear distance from a gathering line. As EPA acknowledges in the preamble, there are many factors that determine gathering line availability – not just distance. There are other considerations that drive the decision to recover gas which include, but are not limited to, the following factors: gas volume, gas pressure, gas Btu content, gas liquid content, sales line gas pressure requirements, moisture

⁴⁶ Comments of the Independent Petroleum Association of America and Western Energy Alliance on White Papers on Methane and VOC Emissions in the Oil and Natural Gas Sector per the Climate Action Plan Strategy to Reduce Methane Emissions (June 16, 2014).

⁴⁷ Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,630, 56,632 (Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60).

requirements, compression, and current takeaway capacity of existing gathering systems. One workable approach that might assist regulators is to use a linear distance, such as a ¹/₄ mile, to presume that flaring is permitted because it is generally agreed that, beyond that distance a gathering line is not available. The converse, a gathering line within a ¹/₄ mile, should not be assumed to be available prompting a case-by-case determination based on the factors detailed above. Again, IPAA/AXPC supports EPA's acknowledgment that the availability of a gathering line must be considered in evaluating the feasibility of an oil well completion but that it is not as simple as designating a linear cut point.

IPAA/AXPC supports the various exclusions from the oil well REC requirements for oil wells less than 15 boe; wells with a gas-to-oil ratio (GOR) of 300 or less; and the low-pressure well. Although not an exact science, operators can make engineering judgments and estimations based on experience in a developed formation. If the well initially exceeds 15 boe, a potential solution is to allow the operator to temporarily shut in the well and bring in REC equipment or limit the production such that the well does not make more than 15 boe for any measurement period as long as the average rate of the averaging period is 15 boe or less. In the event that the operator, based on strong well performance, decides to bring in REC equipment, he could earn a 0 bopd credit to the averaging period for every day the REC is used. IPAA supports the inclusion of an exclusion for a "low-pressure oil well" but it is not appropriate to utilize the definition for a "low-pressure gas well." Oil and water are fairly equivalent on their impact on the intent of this low-well pressure exemption in the early phases of flowback, and the water/oil ratio will change significantly during the early flowback periods for hydraulically fractured wells. The main difference is that, once the hydraulic fracture load stops coming back, a gas well will typically have much less liquids in the production tubing, making the surface pressure actually higher for the gas well vs. an oil well. This difference would be reflected in the 0.038 number which represents the gas gradient in the well, which would impart a back pressure. For oil wells this back pressure would be higher, i.e. more liquids in the tubing, and this factor should be increased. For example a well making 15 boe up 2-3/8" production tubing at a 300 GOR could have a gradient of 5 to 10 times as much. The new record-keeping requirements associated with oil RECs (but also applicable to natural gas RECs) disproportionately impact the smaller, independent operators (conventional operations).

Finally, IPAA/AXPC continues to believe EPA's cost-effectiveness analysis for oil well completions is flawed because it is taking "credit" for well completions industry has already done or will do regardless of regulations. IPAA and WEA filed extensive comments on EPA's oil well completion White Paper on June 16, 2014.⁴⁸ The issues raised in that process have not been adequately addressed by EPA in the RIA or Technical Support Document for this rulemaking. The most relevant provisions of those comments are reproduced below:

Finally, we question the need or benefit of EPA requiring reduced RECs or combustions devices/flares at oil wells as operators are already engaged in such

⁴⁸ Comments of the Independent Petroleum Association of America and Western Energy Alliance on White Papers on Methane and VOC Emissions in the Oil and Natural Gas Sector per the Climate Action Plan Strategy to Reduce Methane Emissions (June 16, 2014). The Comments of AXPC/America's Natural Gas Alliance (ANGA) are incorporated by reference.

> practices at a majority of the wells. There is a clear economic incentive to capture as much of the gas as possible and where it is not possible to capture the gas, safety concerns for the personnel at the well site drive the installation of flares. It is a matter of economics and common sense—if the gas can be captured economically, it will be. If it cannot be captured economically, and it is present in sufficient quantities to represent a safety concern, it is flared.

See the comments above, as they pertain to EPA's data sources and estimates.

For the reasons set forth above, we have considerable doubt as to the accuracy of the national and per well estimates of methane and volatile organic compounds ("VOC") emissions for hydraulically fractured oil well completions. There is significant variation in the emissions among different well types and wells from different regions. As such, a "national estimate" will not necessarily be representative of wells from a particular region (and, in fact, would be representative only by chance).

• • •

As to factors that influence emissions, there are numerous factors that were not discussed in the White Papers. Most importantly, the White Papers do not adequately address the complex nature of what EPA terms "co-produced" wells, where both oil and gas are produced. Such wells are difficult to classify in terms of how any given well will behave in a wide variety of geologic formations and basins. In addition, EPA does not discuss the well-established fact that nearly all oil wells that produce appreciable amounts of gas are controlled by a combustion device for safety reasons. As mentioned above, the existing economic and safety incentives result in a majority of these wells being "controlled"-whether by a REC or combustion device. In fact, a survey submitted as part of the docket for NSPS Subpart OOOO was conducted by AXPC/ANGA member companies that showed that greater than 90% of wells were controlled prior to the rulemaking. Comment submitted by Amy Farrell, Vice President of Regulatory Affairs, America's Natural Gas Alliance (ANGA) and Bruce Thompson, President, American Exploration and Petroleum Council (AXPC); EPA-HQ-OAR-2010-0505-4241. A similar Texas Energy Alliance survey had comparable results, again supporting the position that further EPA requirements mandating REC/flares are not necessary.⁴⁹

In the TSD for the proposed Subpart OOOOa, EPA continues to claim ignorance as to the extent state and local regulations require well completions and claim an arbitrarily low assumption that only 7 percent of completions are controlled in the absence of federal regulations.⁵⁰ This

⁴⁹ *Id.* [internal citations omitted]

⁵⁰ TSD at 22.

arbitrarily low assumption skews EPA's cost-effectiveness and takes "credit" for activities the industry is doing on its own.

D. <u>Pneumatic Pumps</u>

IPAA/AXPC's primary concern with the proposed requirements for pneumatic pumps is that EPA has overestimated the ease (and thus the cost) of sending captured gas to an existing combustion device. It is not as simple as plumbing a line from the pump to the control device. The intermittent nature of the gas flow and low pressures can create serious safety and operational difficulties if not appropriately designed along with significantly increasing engineering costs associated with the closed vent system upgrades. The difference between the amount of gas being vented from a storage tank and the amount of gas coming from a pneumatic pump is large, and designing a closed vent system to properly account for this pressure differential would be exceedingly difficult and costly. To meet the needs of both components, the final design would likely have the potential to increase emissions (such as being forced to use a small compressor or being forced to set thief hatches at different pressures that in turn cause more emission events from the tanks) than if the pump was vented directly to the atmosphere. The volume of gas to be captured from pneumatic pumps is relatively small, and when EPA more accurately reflects the cost associated with capturing the gas and routing it to an existing control device, IPAA/AXPC questions whether the proposed controls will be cost-effective. If EPA persists with its proposed controls on pneumatic pumps, it should clarify the definition of an "affected facility" and the interplay with reporting requirements. "Affected facility" should mean only new or modified continuous high-bleed pumps and specifically exclude low-bleed pumps (< 6 scfh). Since low-bleed pumps would not be considered an "affected facility," it is assumed they would not be subject to the reporting requirements for high-bleed pneumatic pumps. IPAA/AXPC requests confirmation of its reading of the reporting requirements.

The applicability of EPA's proposed regulations turns on whether a control device is already present at the site. EPA's regulations and preamble are silent as to whether the existing control device is already subject to NSPS and therefore an affected facility. To the extent the existing combustion device is not an affected facility, Subpart OOOOa should be clarified that existing, non-affected facility combustion devices should not become subject to NSPS simply because a new pneumatic pump is installed or an existing pump is modified. If EPA intends to pull in the existing control device and make it an affected facility, EPA must revise its costeffective analysis to account for the additional costs associated with "converting" the existing control device to an affected facility.

E. <u>Compressors</u>

IPAA/AXPC supports EPA's indication that the compressor rules promulgated under Subpart OOOO and proposed Subpart OOOOa do not apply to compressors at the wellsite. IPAA/AXPC interprets the proposed CTG for compressors as essentially the same as that proposed in Subpart OOOOa, yet the CTG indicate the regulations would apply to compressors

"between the wellhead and point of custody transfer."⁵¹ This language seems inconsistent with the concept that compressors at the well site are not subject to Subpart OOOO or the proposed Subpart OOOOa. IPAA/AXPC requests clarification. Similarly, IPAA/AXPC requests clarification on whether compressors at well sites are subject to LDAR requirements. Finally, in response to EPA's specific request, IPAA/AXPC suggests the fugitive emissions requirements at compressor stations should apply only to the fugitive sources that are connected to the added or modified compressor.

F. Liquids Unloading

IPAA/AXPC supports EPA's conclusion that it does not have sufficient information to propose standards for liquids unloading. IPAA and WEA filed extensive comments on EPA's liquids unloading White Paper on June 16, 2014.⁵² The numerous issues raised by IPAA/WEA have not been adequately addressed and continue to be the basis for IPAA/AXPC's position that controls aimed at reducing emissions from liquids unloading vary greatly based on numerous factors that make it difficult if not impossible to promulgate a cost-effective NSPS. IPAA/AXPC incorporates by reference these comments in their entirety regardless of topic. Nonetheless, certain portions of IPAA/WEA's comments on liquids unloading warrant repeating:

The industry has a strong economic incentive to minimize venting episodes. Indeed, what EPA views as a pollutant is generally viewed by industry as a salable product and thus industry has an economic incentive to capture as much of the gas as possible. Unfortunately, it is not always possible to unload without venting—sometimes for safety reasons and sometimes for technological reasons. The limitations on the ability to minimize venting are difficult to predict and largely well-specific.

Although the challenges associated with liquids unloading are equally prevalent among horizontal and vertical wells, the ability to recover the cost of "controls" will most likely disproportionately affect smaller operators, marginal wells and vertical wells. Nowhere in the charge questions or White Paper does EPA attempt to address the potential for such disproportionate economic impacts to result from a "one size fits all" approach to minimizing emissions during liquids unloading. The need to unload liquids depends primarily on reservoir pressure, liquid/gas ratio, and surface operating pressure; the most appropriate technology used to unload will depend on the producing formation, site equipment and logistics, and other considerations. There is a wide variety of reservoir properties across and within basins, and flexibility is critical in the continued production of these wells.

⁵¹ U.S. Environmental Protection Agency, Control Techniques Guidelines for the Oil and Natural Gas Industry (Draft), (Aug. 2015) *available at* <u>http://www3.epa.gov/airquality/oilandgas/pdfs/og_ctg_draft_081815.pdf</u>.

⁵² Comments of the Independent Petroleum Association of America and Western Energy Alliance on White Papers on Methane and VOC Emissions in the Oil and Natural Gas Sector per the Climate Action Plan Strategy to Reduce Methane Emissions (June 16, 2014).

As a general matter, the national estimates of methane emissions based on EPA's Greenhouse Gas Reporting are overstated, over-reported and dated at this point. The 2012 API/ANGA study included in the White Paper indicates as much and concludes that EPA's Greenhouse Gas Inventory was overestimated by orders of magnitude. More source specific data—i.e., data specifically focused on liquids unloading—is needed before conclusions should be drawn as to this subsector's contribution to methane emissions from the broader oil and natural gas sector.

The formulas used by EPA to calculate the gas volumes vented during unloading events estimates that the entire well column is vented during an event. The reason for the unload is because fluid is sitting in this column, taking up this space, and resulting in an overestimation of emissions. Additionally, the formulas utilize only a casing diameter for wells without plunger lifts (and tubing diameter for wells with a lift). Most wells are generally equipped with production tubing strings in an effort to increase the velocity of the gas and liquids and reduce the potential for liquid [un]loading problems. When these tubing strings are in place, gas volumes vented during unloading events would be from the casing-tubing annulus (area between the outside of the tubing and the inside of the well's casing) and not from the entire volume of the well's casing. This is not accounted for in many of the estimates.

In addition, the formulas used by EPA assume that gas is being vented for any well liquid unload lasting longer than one hour (or 30 minutes for unloads that are plunger lift assisted). During the liquid unloading process, there is usually an initial release of gas followed by a period of time where operators are waiting for the liquid to travel up the well bore and nothing is being released from the well; this can happen for only a few minutes or up to several hours. The formulas assume that any duration longer than one hour is continually venting at a rate equal to the production rate of gas when in fact no gas is being vented, significantly overestimating the emissions from these activities.

Factors influencing regional differences in VOC and methane emissions are a complex set of variables that include temperature, pressure, hydrocarbon composition of the oil and gas within the production formation, gas to liquid ratio, well configuration, well depth and surface conditions at the time of the unloading event. The factors that influence the frequency and duration of liquids unloading include those listed in the previous sentence, and the solution for each well and/or application is based on engineering calculations and judgment and is intrinsically well-specific. Production engineers run models to determine the proper design and operating parameters. The numerous factors and inability to generalize even by formation make it difficult to predict which wells will be more susceptible to high levels of emissions associated with liquids unloading.

The need for liquids unloading is not based on a strict set of parameters or rules. It is based on a complex set of variables—primarily reservoir pressure, but

. . .

also including (but not limited to) gas to oil ratio, geologic formation types, and age of well. In addition to geological factors, technology-based factors include (a) large or no production tubing strings installed, (b) wells with high sales line pressure and no compression equipment installed at the surface, and (c) wells not equipped with artificial lift equipment such as gas lift mandrels/valves, plunger lift, rod pump, etc. Regarding the type of well, horizontal or hydraulically fractured wells are no more likely than vertical or non-hydraulically fractured wells to develop liquids [un]loading problems. It is not only a problem for wells further down their decline curve.

Simply put, one cannot generalize—there is no particular pattern or predictable model that would forecast which well types are prone to having liquids [un]loading problems. It is the inability to generalize that makes each well unique and requires a case-by-case analysis to address a liquid [un]loading problem. That said, there are some trends—the highest tendency are deeper wells with high liquid to gas ratios and low bottom hole pressure. Because the reservoir pressure does decline over time, liquid [un]loadings are more prevalent in older wells. Wells drilled and completed in formations drained by previous production may experience [un]loading problems more quickly. All wells with liquid saturations above irreducible levels will develop liquid [un]loading conditions.

The cost of the technologies varies and what will constitute a costeffective technology will vary from well to well. For example with plunger lifts, the capital, installation, and startup cost is an exponential costing issue based on ever increasing depth of the well (e.g., the cost of a 11,000 to 12,000 foot well might approximate \$25,000 to \$30,000 for certain operations in East Texas whereas a 1000 foot well may only be \$2000 or \$3000). Also related to plunger lifts, a "smart technology" cost is dependent on many variables such as well density and availability of a communication network. The communication network for 400 densely spaced wells can easily cost approximately \$4 million dollars (average of \$10,000/well before adding the cost of the smart controls themselves). The EPA's high range of \$18,000/well is not necessarily "high" for many situations. As to artificial lifts, the costs are substantially more. One member indicated capital and installation costs for 11,000 -12,000 foot wells are in the range of \$150,000 per well -- much higher than EPA's estimates. Again, the depth of the well influences the costs figures and it is difficult and inappropriate to generalize. The best solution to the liquids unloading problem is a case-by-case decision based on the engineering judgment of the operators.

As noted above, the feasibility of the use of artificial lift systems is generally site-specific and therefore it is difficult to generalize. Artificial lift systems are just one of the available "tools" or technologies to extend the useful life of a well and are utilized where cost-effective. That said, they tend to be costprohibitive on deeper low production gas wells and work best on shallow wells

capable of setting a pump/plunger/gas lift below the bottom perforations. Some characteristics that discourage the use of artificial lift include deep formations, corrosive production fluids, wells with high scaling tendency, and deviated wellbores. The feasibility of artificial lifts must be assessed according to the conditions of the individual well. One size does not fit all.

In certain situations, gas wells with liquid content that are unloaded are capable of being controlled with flares attached to the tank vents at the production battery. In others, the high pressures in certain regions make routing blowdowns to tanks and flares extremely unsafe. Even wells that are blown down can sometimes be vented through tanks that are controlled in many cases by flares. The capability to do this, however, depends greatly on the conditions of the well bore and the equipment used to control (tanks, flares, etc.) These flares and the associated tanks/tank vents are not specifically designed to accommodate liquids unloading. Regarding the use of flares specifically for liquids unloading events, there are several design and operational issues: (1) liquids unloading are slug flow events that are inconsistent in both gas volumes and quality, (2) consequently, designing a flare for the wide range of operating conditions is challenging, (3) additional equipment may be required to prevent liquids from reaching the flare (separators, etc.), and (4) the intermittent nature of these events is another challenging design condition especially in avoiding smoking conditions, etc. To the extent that EPA contemplates a continuous flare to minimize emissions from these intermittent events, the negative externalities associated with the carbon dioxide emissions from the pilot should be factored into any analysis. To accommodate the operational issues associated with flares and associated equipment designed to specifically address liquids unloading, they would need to be relatively large which could present safety hazards and create local permitting issues.⁵³

EPA's proposed Subpart OOOOa seems to leave the door open for potential regulation of emissions associated with liquids unloading and requested comment on the issue. IPAA/AXPC supports EPA's decision to not propose federal standards. The issues outlined above have not been adequately addressed by EPA and remain largely unaddressed.

- G. <u>Miscellaneous Requests for Input</u>
- EPA requested input on "pressure-assisted flares." IPAA/AXPC is not entirely clear what EPA is referring to as pressure-assisted flares. To the extent IPAA/AXPC understands the type of flare EPA is referring to, IPAA/AXPC does not believe there is any reason to treat these flares differently than any other flare. Or stated slightly differently, pressure-assisted flares should be treated as any other flare subject to the Subpart OOOO and proposed Subpart OOOOa regulations

- IPAA/AXPC supports a clarification that the storage vessel provisions do not apply to large (e.g., 25,000 bbls or more) tanks used for water recycling, as they have very low emissions but might trigger the 6-ton threshold because of size and volume of throughput. EPA's recognition that this water has very low emissions calls into question whether the smaller "storage vessels" that hold the same type of water, just smaller quantities, should be an affected facility.
- IPAA/AXPC does not support EPA's concepts of independent third-party verification, fugitive emissions verification, and "electronic reporting and transparency" as described as part of EPA's Next Generation Compliance and Rule Effectiveness. As an initial matter, companies should be allowed to verify issues internally. EPA's concept of utilizing certified reviewers would pose a significant problem for the industry in terms of not having enough qualified individuals to conduct the review. Eventually the market would adjust, but in the short term there would be a shortage. EPA's concept would create a problem in an attempt to solve an "issue" that currently does not exist. Finally, industry does not support a continuous parametric monitoring system since this would result in significant costs to companies that do not have supervisory control and data acquisition (SCADA) capabilities and would another add link in the system that could fail. A simpler and better solution would be to require all thief hatch vents to be set at a pressure above that of the main ventline.

V. Control Technique Guidelines for Ozone Nonattainment Areas

Clearly, the CAA provides direction to EPA and states that requires the use of RACM in Ozone nonattainment areas to manage emissions from existing sources. However, EPA's presentation of the CTG for oil and natural gas production facilities fails to provide a technological analysis based on the fundamental basis for RACM. Instead, it arbitrarily applies the new source BSER requirements to existing sources without any realistic analysis of whether these technologies are reasonably available and applicable as RACM. Moreover, as IPAA/AXPC demonstrated earlier in these comments, the differences between the oil and natural gas production industry and other industry segments requires a recognition that there are significant differences across the industry in the size and scope of operations that dramatically impact the economic implications of controls. The CTG proposals largely ignore this reality. Any CTG for oil and natural gas production facilities needs to provide an application threshold that excludes marginal oil and natural gas wells. Finally, with the revision to the NAAQS for Ozone, new areas - many of which are rural in nature - will be subjected to the RACM created by the proposed CTG. Without the appropriate recognition of the broad diversity of the oil and natural gas production industry and the need for the CTG to be based on appropriate existing source technologies, serious adverse impacts on American production could result. Not only has EPA failed to address this issue in the CTG proposal, EPA's own assessment of the nation's ability to attain the Ozone NAAQS demonstrates that this CTG is both unnecessary and counterproductive.

Consequently, IPAA/AXPC requests withdrawal of the current CTG proposal until EPA can address its serious shortcomings and determine whether a broad CTG proposal is appropriate as a RACM approach for oil and natural gas production facilities.

Following is a detailed discussion of the basis for IPAA/AXPC's opposition to the current CTG proposal and reasons why it should be withdrawn.

In its Federal Register notice regarding the *Release of Draft Control Technique Guidelines for the Oil and Natural Gas Industry*, EPA provides a pertinent description of the RACM process:

Section 172(c)(1) of the Clean Air Act (CAA) provides that State Implementation Plans (SIPs) for nonattainment areas must include "reasonably available control measures", including "reasonably available control technology" (RACT), for existing sources of emissions. Section 182(b)(2)(A)of the CAA requires that for Moderate Ozone nonattainment areas, states must revise their SIPs to include RACT for each category of VOC sources covered by a CTG document issued between November 15, 1990, and the date of attainment. CAA section 182(c) through (e) applies this requirement to States with ozone nonattainment areas classified as Serious, Severe and Extreme.

The CAA also imposes the same requirement on States in ozone transport regions (OTR). Specifically, CAA Section 184(b) provides that states in the Ozone Transport Region (OTR) must revise their SIPs to implement RACT with respect to all sources of VOCs in the state covered by a CTG issued before or after November 15, 1990. CAA section 184(a) establishes a single OTR comprised of Connecticut, Delaware, Maine, Maryland, Massachusetts, New Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont and the Consolidated Metropolitan Statistical Area (CMSA) that includes the District of Columbia.

The EPA defines RACT as "the lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological and economic feasibility" (44 FR 53761, September 17, 1979).⁵⁴

While this description is accurate, EPA wholly fails to meet the test of identifying "control technology that is reasonably available considering technological and economic feasibility."⁵⁵

To understand EPA's failure, it is essential to expand our earlier discussion of the nature of the oil and natural gas production industry. As described earlier, the oil and natural gas production industry differs from other industries because of the inherent reality that its production is not constant. Instead, because of geological realities, production from most oil and

⁵⁴ Release of Draft Control Techniques Guidelines for the Oil and Natural Gas Industry, 80 Fed. Reg. 56,577, 56,578 (Sept. 18, 2015).

⁵⁵ Id.

natural gas wells peaks at or near its earliest stages of full production. In essence, once the reservoir is opened, the contained pressure in the reservoir forces oil and natural gas through the well bore to the surface. But, this pressure also begins to diminish and with it the flow rate of the well. While various techniques are available depending on the type of formation to improve production, these actions adjust the rate of decline; they do not return the well to its original productivity.

Consequently, over time, wells move from strong producers to marginal ones. In fact, marginal wells are defined in federal law as oil wells producing 15 barrels/day or less and natural gas wells producing 90 mcfd or less. While these are the thresholds, the average marginal wells produce at much lower levels – the average marginal oil well produces 2.7 barrels/day and the average marginal natural gas well produces 22 mcfd. There are business implications to this production depletion as well. As the operating costs of production increase when production decreases, companies sell less productive wells to obtain capital for reinvestment in new production. Many characterize the oil and natural gas production industry as a "food chain" industry with larger companies selling properties that do not fit their production structure to smaller companies. As a result, marginal well ownership is dominated by smaller organizations, many of which are privately held small businesses. As IPAA/AXPC previously stated, there are over 1.1 million oil and natural gas wells in the United States; approximately 760,000 are marginal wells.

Correspondingly, as production from wells decreases, the physics of emissions changes as well. With less pressure in the well bore, there is less pressure driving emissions to the atmosphere from operating equipment. Even more telling, the most recent research efforts such as those by the University of Texas' Center for Energy and Environmental Resources demonstrate that emissions at oil and natural gas production operations are dominated by a small percentage of sources. Moreover, experience is indicating that when these sources are corrected and maintained, emissions reductions are sustained for long time periods.

Set against this pattern of industry structure and experience, EPA has failed to create a record that demonstrates it made a thoughtful analysis of the technologies it is proposing in the CTG as RACT – particularly in the context of considering technological and economic feasibility. Instead, EPA has arbitrarily applied the BSER technologies in Subpart OOOO and proposed to do so in Subpart OOOOa as they relate to new sources in the context of existing sources. In doing so, EPA fails to appropriately adjust the economic analysis from the NSPS materials to reflect the different circumstance of existing operations.

Among the key factors that EPA understates is the need to focus these regulations on VOC emissions. Because these CTG address VOC emissions, their cost effectiveness and technological appropriateness must be evaluated with regard to their impact on VOC emissions. For example, EPA bases much of its cost-effectiveness determinations on average VOC emissions, but RACT needs to be considered by each state for each nonattainment area. Different oil and natural gas formations produce different vapor compositions including significantly different fractions of VOCs in the vapor. Correspondingly, for the same cost, cost effectiveness will change; it will become less cost-effective as the VOC concentration diminishes.

Similarly, EPA bases much of its analysis on "model" facilities, but facilities differ depending on the nature of their operations. While EPA's draft CTG proposal recommends that facilities with only a wellhead should not be included in its fugitive emissions CTG, it should similarly recognize that facilities with fewer components than the EPA model facility need to be evaluated based on their actual structure rather than presumed to be cost-effectively controlled under the CTG.

These issues become more compelling when the CTG affect marginal oil and natural gas wells. EPA partly recognizes this reality by stating in the context of its fugitive emissions proposed CTG:

For purposes of this guideline, the emissions and programs to control emissions discussed herein would apply to the collection of fugitive emissions components at a well site with an average production of greater than 15 barrel equivalents per well per day (15 barrel equivalents), and the collection of fugitive emissions components at compressor stations in the production segment. It is our understanding that fugitive emissions at a well site with low production wells are inherently low and that many well sites are owned and operated by small businesses. We are concerned about the burden of the fugitive emissions recommendation on small businesses, in particular where there is little emission reduction to be achieved.⁵⁶

This recognition is entirely appropriate and accurate. However, it needs to apply to all of the CTG. Marginal wells are the most vulnerable U.S. production operations – particularly at the current oil and natural gas commodity prices that are well below the prices used by EPA in its cost-effectiveness analyses. Yet, these wells continue to provide a significant portion of American production. Additionally, the CTG should provide that status as a marginal well qualifies for an off ramp from continuing application of the regulations. That is, when a well's production drops to the point where it is considered a marginal well, the facility would no longer be subject to the regulation.

EPA also needs to recognize that its CTG proposal coincides with its decision to lower the Ozone NAAQS. American oil and natural gas operations are located where the resources exist. Unlike manufacturing facilities, they cannot choose where to operate. Historically, much of America's oil and natural gas has been located in largely rural areas. Recent development of American shale resources has placed operations closer to populated areas – many of which are in Ozone nonattainment areas. However, EPA's decision to lower the Ozone NAAQS captures areas that have previously been in attainment. Since a number of these new projected nonattainment areas encompass production areas, these CTG will have a broader and more significant potential impact on U.S. production. The following map provides a perspective on the interaction between American production areas and nonattainment with the new Ozone NAAQS.

⁵⁶ U.S. Environmental Protection Agency, Control Techniques Guidelines for the Oin and Natural Gas Industry (Draft), (Aug. 2015) *available at* <u>http://www3.epa.gov/airquality/oilandgas/pdfs/og_ctg_draft_081815.pdf</u>.

Ozone Nonattainment Areas Impacting American Oil & Natural Gas Production

While oil and natural gas production facilities have always been subject to RACM in current Ozone nonattainment areas, the CTG proposal changes the regulatory framework significantly. Part D of the CAA provides for states to impose RACM on existing stationary sources as a part of the requirements to demonstrate attainment or Reasonable Further Progress toward attainment. These RACM requirements, however, apply to stationary sources of a specific size depending on whether an Ozone nonattainment area is classified as Moderate, Serious, Severe or Extreme. Therefore, regulation of existing oil and natural gas production facilities depended both on their size and the status of the Ozone nonattainment area. The CTG proposal in general does not set emissions thresholds for its application. As such, for large or small producers, or large or small emitters, the regulatory burden will apply and will apply far more broadly.

As EPA states with regard to the proposed Subpart OOOOa, "we [EPA] believe that the industry can bear . . . and survive."⁵⁷ However, no broad analysis of the collective impact of the CTG proposal on American oil and natural gas production in the context of the revised Ozone NAAQS has been done. Such an analysis should be done for several pertinent reasons.

⁵⁷ Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,629 (Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60).

> Ozone has consistently been the most difficult primary NAAQS for certain areas to meet. The following figures demonstrate the reality of Ozone NAAQS nonattainment. Figure 1 presents EPA's assessment of the areas of the country that fail to meet the 1997 Ozone NAAQS of 84 ppb (8 hour). Figure 2 presents EPA's assessment of the areas of the country that will fail to meet the current Ozone NAAQS of 75 ppb (8 hour) in 2020. Figure 3 presents EPA's assessment of its revised Ozone NAAQS by 2025.

Today, 90 percent of those areas meet the 1997 Standards

Figure 1

Source: Environmental Protection Agency

Counties with Monitors Projected to Violate the 2008 8-Hour Ozone Standard of 0.075 parts per million (ppm) in 2020

Figure 2

Source: Environmental Protection Agency

EPA's analysis shows that there are certain areas of the country that are enduring Ozone NAAQS nonattainment areas – areas that cannot meet any Ozone NAAQS that has been promulgated. The same areas that failed to meet the 1997 Ozone NAAQS and the 2008 Ozone NAAQS also will fail to meet the proposed NAAQS by 2025 and, realistically, any time until well after 2030. What this means is that EPA's claimed health benefits from the proposed NAAQS will not occur in these enduring nonattainment areas.

Equally important, the regulatory requirements in these enduring nonattainment areas will be no different under the proposed NAAQS than they are under the current NAAQS. These areas are subject to regulation under Part D – Plan Requirements for Nonattainment Areas of the CAA.

Part D was created in the 1990 CAA amendments. It creates a series of specific minimum requirements for each area in Ozone NAAQS nonattainment initially based on the area's ozone monitoring values relative to the Ozone NAAQS. Areas are classified as Marginal, Moderate, Serious, Severe and Extreme. Each classification is given a specific time frame in which to attain the Ozone NAAQS. Importantly, if an area fails to meet the NAAQS in its allotted compliance period, it is reclassified to a

higher classification, required to implement the mandatory requirements and given an extension of time to meet the NAAQS. Part D requirements were initiated after the 1990 CAA amendments with attainment dates ranging from 1993 to 2010. Even with attainment date extensions, these dates have passed.

The significant impact of Part D is that perpetual nonattainment eventually produces a baseline of regulations and requirements of additional annual percentage reductions. Since these areas have been subject to Part D for 25 years, their future regulatory requirements will be the same iterative percentage reductions under the current NAAQS as the new one. Adopting the revised NAAQS will produce the same regulatory requirements for these areas as the current NAAQS.

2. EPA has stated in its support documents for its revised Ozone NAAQS that:

Existing and proposed federal rules . . . will help states meet the proposed standards by making significant strides toward reducing ozone-forming pollution. EPA projections show the vast majority of U.S. counties with monitors would meet the proposed standards by 2025 just with the rules and programs now in place or under way.

Consequently, these national, federal requirements will essentially protect the overwhelming number of areas that would be placed in Ozone NAAQS nonattainment by the lower NAAQS without any of the local actions that would be required from such categorization.

For these areas that EPA projects would reach attainment using only national, federal mandates regardless of the NAAQS, promulgating the lower NAAQS will compel them to be subject to the requirements of Part D of the CAA. Because Part D imposes a series of minimum requirements, the revised NAAQS will impose emission controls on new sources in those areas, including offsets, which will be burdensome, cost ineffective and unnecessary since EPA believes these areas would reach attainment using only its national regulations.

Once an area becomes subject to Part D, minimum requirements are mandated. For example, all new construction must not only comply with rigorous emissions controls, but all remaining emissions must be "offset" by reductions in existing emissions that are not otherwise regulated. Many of the areas that would fall into initial Ozone NAAQS nonattainment but would later attain the NAAQS are largely rural or with smaller municipalities. These areas will likely have limited existing emissions sources to regulate. These areas will face either an effective construction prohibition or the choice of shutting down existing operations that employ current workers.

3. The proposed oil and natural gas production CTG get pulled into this murky process. Enduring Ozone nonattainment areas already are a possible target for RACM requirements, but those requirements are predicated on the size of the source and

therefore not imposed without consideration of their impact on emissions and with localized consideration of cost effectiveness. For the newly captured Ozone nonattainment areas that EPA believes will meet the revised Ozone NAAQS using national, federal regulations – an assessment made without the inclusion of the proposed CTG – the application of the proposed CTG is unnecessary to reach attainment. However, because the CTG would be applied and would be applied to such small sources, these reductions are also removed from the possible pool of emissions that could be managed as a part of emissions offsets needed to build new facilities. In many of these areas, new facilities are likely new oil and natural gas wells. Consequently, the impact of the CTG would be to limit new production.

For these reasons, EPA must fully assess the energy, economic and environmental consequences of implementing the proposed CTG in the context of the revised Ozone NAAQS. IPAA/AXPC believes that EPA cannot justify the current CTG at this time. As the following graphic shows, EPA projects that only a few areas will remain in Ozone nonattainment in 2025.

This projection is based on regulatory actions taken without the proposed CTG. It demonstrates that the CTG is not essential to Ozone NAAQS attainment. Certainly, in some enduring

nonattainment areas some oil and natural gas production facilities would be subject to RACM, but these decisions would be based on local conditions and the economic circumstances of the oil and natural gas production operations in those areas. Finalizing the proposed CTG would make all oil and natural gas production operations subject to the CTG without a compelling need – based on EPA's own projections of Ozone attainment – and without the opportunity to assess local need. Moreover, it would eliminate possible actions that could facilitate new construction as offsets and thereby unnecessarily threaten economic growth in these areas. If EPA finalizes an oil and natural gas production CTG without assessing all of these consequences, it can only be viewed as arbitrarily ignoring significant implications that EPA has the responsibility to address.

It is pertinent to address the methane emissions issue here, too. While this proposed oil and natural gas production CTG is written to manage VOC emissions, it has been proposed as a part of the Administration's Climate Action Plan and is partly a surrogate for methane emissions management. However, as IPAA/AXPC stated earlier in these comments, the requirements already in regulation under Subpart OOOO more than achieve the Administration's methane reduction targets for the oil and natural gas production segment of the Climate Action Plan. This CTG needs to be addressed on its merits and its consequences weighed with regard to Ozone NAAQS nonattainment.

In addition to these general concerns, IPAA/AXPC has issues associated with the specific CTG proposals.

A. <u>Fugitive Emissions</u>

IPAA/AXPC identified a series of specific issues in the discussion of the Subpart OOOOa proposal that apply in the CTG context as well. Here, this discussion will focus on some of those issues and raise others that arise because of its application to existing sources.

First, EPA's approach to a fugitive emissions program fails to recognize the nature of these emissions at oil and natural gas production facilities. This emissions arena is characterized by "fat tail" emissions where a few components within the facility account for the overwhelming amount of the releases. At the same time, it is an arena where the appropriate regulatory formulation is still being identified. Several states have initiated fugitive emissions programs, and each differs from the others. Clearly, it will take some time to determine the efficacy of approaches in order to assure that a cost-effective program is defined. Into the middle of this uncertainty, EPA proposes the most burdensome approach with expectations of success that are not founded on experience. Rather than bullying its way into the arena, EPA has two far better approaches it could take. One is to work with industry to develop voluntary initiatives that would reflect the emerging understanding of fugitive emissions patterns. IPAA/AXPC believes that EPA should withdraw its fugitive emissions proposals until more is known about the best approaches to managing them.

Second, initial experiences with state programs are revealing that once a "fat tail" source is corrected through appropriate maintenance, its emissions do not increase – at least for long periods of time. In fact, because the current state programs have been operating for a limited

amount of time, some sources that have been fixed have not needed a second action. However, like its NSPS proposal, EPA creates a framework of shifting monitoring frequencies that are not justified based on experience. If EPA continues to pursue its proposal, it should rely on an annual inspection cycle to create a stable planning framework.

Third, when states have or create their own fugitive emissions programs, these programs should be considered as meeting CTG requirements.

Fourth, IPAA/AXPC supports excluding smaller facilities (e.g., marginal wells producing 15 barrels/day of oil equivalent or less) from the scope of the fugitive emissions program and believes that facilities that are initially included in any program should be excluded when their production falls below the threshold. IPAA/AXPC agrees that a fugitive emissions program should not apply to facilities with only a single wellhead. Further, EPA bases its program on a "model" facility with an expected number of components. IPAA/AXPC recommends that sites with less than the model facility components should be excluded from the fugitive emissions program.

Fifth, IPAA/AXPC believes that EPA is understating the costs of its fugitive emissions program and overstating its benefits. As IPAA/AXPC stated in discussing the NSPS proposal, EPA relies on technologies that are costly while not demonstrating those technologies are necessary to achieve benefits. For example, EPA is enamored with the use of specific OGI technologies. EPA places far too much faith that OGI can detect emissions accurately. Moreover, by using this technology, it drives compliance costs excessively. As described earlier, compelling the expenditure of more than \$100,000 per FLIR camera is a burden not easily borne by existing operations where production rates are lower than new facilities in today's economic climate. EPA's proposal immediately demands confidence that the expenditure will result in substantial savings. However, nothing in EPA's CTG proposal demonstrates that it has realistically evaluated the effectiveness of this program at existing facilities. Past CTG have provided a threshold cost effectiveness test that is absent here. Rather, EPA calculates costs/ton of reduced emissions for various technologies whether they are appropriate as RACT. For example, EPA rather cavalierly discounts the costs/ton for oil wells – which exceeds \$10,000/ton in all of its cases and reaches more than \$25,000/ton in some – by stating "[t]he cost of control for natural gas well sites and gathering and boosting stations is considered to be reasonable."58 Implicitly, the cost of control for oil well sites is not reasonable, but EPA proposes the same RACT requirements. IPAA/AXPC believes that oil well sites should be excluded from the CTG and that any natural gas well site program needs to be reconstructed to focus on high-emitting sources with flexibility to use more cost-effective approaches.

EPA errs in locking in current technologies, like OGI, that may well be far less costeffective than new approaches that may arise as state programs learn from experience. As with the NSPS proposal, EPA needs to allow the development of knowledge in managing these fugitive emissions before framing a rigid and ineffective mandate.

⁵⁸ U.S. Environmental Protection Agency, Control Techniques Guidelines for the Oin and Natural Gas Industry (Draft), (Aug. 2015) *available at* <u>http://www3.epa.gov/airquality/oilandgas/pdfs/og_ctg_draft_081815.pdf</u>.

B. <u>Storage Vessels</u>

There is a vast difference between regulating new storage vessels and existing ones. Specifically, a new vessel can be designed to accommodate a vapor collection system whether it is for recovery or combustion. Once built, both the vessel and the system can be maintained to assure that they are operating effectively and safely. Because a CTG addresses existing facilities, there is no certainty that the storage vessels will be capable of accepting the equipment needed to capture vapors. Vessels deteriorate over time despite maintenance, and if the structural integrity is compromised by the additional equipment, a safety issue arises.

In this context, and more generally, EPA's cost estimates must be scrutinized. EPA suggests that vapor recovery units (VRU) or combustors can be considered RACT for vessels with emissions of 6 tons/year or more. However, if a storage vessel cannot safely operate with additional equipment, the entire vessel would have to be replaced, if replacement is even economically feasible. EPA does not consider this situation in calculating its cost effectiveness, but it should because the consequences would considerably change the determination of RACT. For example, at some facilities under current economic conditions, the cost of a new storage vessel would not be economically feasible based on the facility's production rates.

Additionally, IPAA/AXPC believes that marginal well facilities should be excluded from the scope of the CTG. Clearly, the burden of adding capture equipment – and certainly the burden of replacing storage vessels – cannot be readily borne by marginal well operations. EPA relates emissions to production rates as shown in the following table. The information contained in the table shows that marginal well operations fall well below even EPA's presumed RACT threshold of 6 tons/year. Consequently, rather than deliberate on emissions estimates, the straightforward approach to defining the scope of the storage vessel CTG would be to exclude marginal well operations. Similarly, when a facility's production levels fall to the point when it becomes a marginal well operation, it should no longer be required to operate any vapor capture system. Beyond that, there should be the opportunity – like there is in Subpart OOOO – to demonstrate that uncontrolled emissions levels are below 4 tons/year to obtain an exclusion from the storage vessel CTG.

Production Rate Bracket (BOE/day)ª	Oil Wells		Gas Wells	
	Average Oil Production Rate per Oil Well (bbl/day) ^b	Crude Oil Storage Vessel VOC Emissions (tpy) ^c	Average Condensate Production Rate per Gas Well (bbl/day) ^b	Condensate Storage Vessel VOC Emissions (tpy) ^c
0-1	0.385	0.083	0.0183	0.038
1-2	1.34	0.287	0.0802	0.168
2-4	2.66	0.570	0.152	0.318
4-6	4.45	0.953	0.274	0.573
6-8	6.22	1.33	0.394	0.825
8-10	8.08	1.73	0.499	1.04
10-12	9.83	2.11	0.655	1,37
12-15	12.1	2.59	0.733	1.53
15-20	15.4	3.31	1.00	2.10
20-25	19.9	4.27	1.59	3.32
25-30	24.3	5.22	1.84	3.85
30-40	30.5	6.54	2.55	5.33
40-50	39.2	8.41	3.63	7.59
50-100	61.6	13.2	5.60	11.7
100-200	120	25.6	12.1	25.4
200-400	238	51.0	23.8	49.8
400-800	456	97.7	44.1	92.3
800-1,600	914	196	67.9	142
1,600-3,200	1,692	363	148	311
3,200-6,400	3,353	719	234	490
6,400-12,800	6,825	1,464	891	1,864
> 12,800 ^d	0	0	0	0

Table 4-2. Average Oil and Condensate Production and Storage Vessel Emissions per Production Rate Bracket¹³

Minor discrepancies may be due to rounding.

^a BOE=Barrels of Oil Equivalent

^b. Oil and condensate production rates published by EIA. "US Total Distribution of Wells by Production Rate Bracket." http://www.eia.doe.gov/pub/oil_gas/petrosystem/us_table.html.

^c Oil storage vessel VOC emission factor = 0.214 tpy VOC/bbl/day. Condensate storage vessel VOC emission factor = 2.09

tpy/bbl/day. ^d There were no new oil and gas well completions in 2009 for this rate category. Therefore, average production rates were set to zero.

C. **Pneumatics**

The proposed CTG addresses both pneumatic controllers (regulated for new sources under Subpart OOOO) and pneumatic pumps (proposed for new source regulation under Subpart OOOOa). IPAA/AXPC believes that these requirements should not apply to marginal well facilities. In addition, EPA needs to clarify that the CTG does not apply to pneumatics with continuous emissions less than 6 scf/h.

D. <u>Compressors</u>

The proposed CTG addresses a subset of compressors as follows:

(a) *Centrifugal compressors*. Each centrifugal compressor, which is a single centrifugal compressor using wet seals located between the wellhead and point of custody transfer to the natural gas transmission and storage segment. A centrifugal compressor located at a well site, or an adjacent well site and servicing more than one well site, is not a source subject to VOC requirements under this rule.

(b) *Reciprocating compressors*. Each reciprocating compressor located between the wellhead and point of custody transfer to the natural gas transmission and storage segment. A reciprocating compressor located at a well site, or an adjacent well site and servicing more than one well site, is not a source subject to VOC requirements under this rule.⁵⁹

However, it makes no distinction based on the size of the facility. IPAA/AXPC believes that the CTG should not apply to marginal well facilities and that its application should be terminated when a facility becomes a marginal well operation.

E. <u>Conclusion</u>

The proposed oil and natural gas production CTG should be withdrawn. It fails to provide a technological analysis based on the fundamental basis for RACM. Instead, it arbitrarily applies the new source BSER requirements to existing sources without any realistic analysis of whether these technologies are reasonably available and applicable as RACM. It largely ignores the differences between the oil and natural gas production industry and other industry segments that require recognition of the significant differences across the industry in the size and scope of operations. These differences dramatically impact the economic implications of controls. While a portion of the CTG proposal creates an application threshold that excludes marginal oil and natural gas wells, a similar provision should apply to all of its provisions but does not. Finally, with the revision to the NAAQS for Ozone, new areas – many of which are rural in nature – will be subjected to the RACM created by the proposed CTG. Not only has EPA failed to address this issue in the CTG proposal, EPA's own assessment of the nation's ability to attain the Ozone NAAQS demonstrates that this CTG is both unnecessary and counterproductive.

VI. Comments on Source Determination Proposal

The EPA is soliciting comments on a potential revision of the process for determining the nature of a source for certain emissions units in the oil and natural gas sector. Among these are facilities that produce oil and natural gas. The proposal addresses CAA new source permitting

⁵⁹ U.S. Environmental Protection Agency, Control Techniques Guidelines for the Oin and Natural Gas Industry (Draft), (Aug. 2015) *available at* <u>http://www3.epa.gov/airquality/oilandgas/pdfs/og_ctg_draft_081815.pdf</u>.

under the Prevention of Significant Deterioration (PSD) program, the Nonattainment New Source Review (NNSR) program, and Title V permitting program. IPAA/AXPC believes that establishing certainty regarding source determinations provides an important benefit to the permitting process. Below are a series of recommendations and comments that address IPAA/AXPC's concerns regarding the EPA proposal. However, at the outset, IPAA/AXPC would observe that, while there have been some specific issues associated with past interpretations of oil and natural gas production sources, the issue of source determination applies to all stationary sources.

Similarly, this issue of changing the structure of source determination must conform to the constraints of past interpretations. As EPA characterizes its actions on source determination in the Federal Register:

Adhering to the statutory language in CAA section 111(a)(3), we have defined the term "stationary source" to mean "any building, structure, facility, or installation which emits or may emit a regulated NSR pollutant" [40 CFR 52.21(b)(5); 40 CFR 51.165(a)(1)(i); 40 CFR 51.166(b)(5)]. We have then further defined the four statutory terms "building, structure, facility, or installation" collectively in our NSR regulations to mean "all of the pollutant-emitting activities which belong to the same industrial grouping, are located on one or more contiguous or adjacent properties, and are under the control of the same person (or persons under common control)," where the "same industrial grouping" refers to the two-digit Standard Industrial Classification code [40 CFR 52.21(b)(6); 40 CFR 51.165(a)(1)(ii); 40 CFR 51.166(b)(6)]. These three regulatory factors: (1) Same industrial grouping; (2) location on contiguous or adjacent properties; and (3) under the control of the same person or persons must be evaluated on a case-by-case basis for each permitting decision.⁶⁰

EPA needs to confirm clearly that its actions on source determination operate within this larger framework.

EPA presents two approaches to source determination. These comments focus principally on Option A – defining the source based on proximity – because IPAA/AXPC strongly opposes Option B, which includes exclusively functionally interrelated equipment.

Much of the history of the source determination question for oil and natural gas production occurred prior to the significant shift in development to shale formations and the evolution of technology that has been so successfully applied to produce those resources. These changes in the nature of oil and natural gas development alter the physical aspects of producing operations. Oil and natural gas production operations have moved from a framework where numerous vertical wells were drilled in developing a resource play to a framework where development relies on significant horizontal legs providing access to the resources. Correspondingly, a typical well site will now include numerous individual wells ranging from six

⁶⁰ Source Determination for Certain Emission Units in the Oil and Natural Gas Section, 80 Fed. Reg. 56,579, 56,580 (Sept. 18, 2015) (to be codified at 40 C.F.R. pts. 49, 51, 52, *et al.*).

to twelve to, sometimes, twenty. As a result, the concepts that drove past EPA actions to consider source determination approaches that aggregate multiple well sites together – essentially the "daisy chaining" concept the EPA seeks to avoid in this proposal – no longer reflect the industry's common practices.

Similarly important, the regulatory structure that affects oil and natural gas production has changed significantly. Since the beginning of 2015, the industry has been subjected to NSPS requirements on completions of new hydraulically fractured natural gas wells, pneumatic controllers, and storage vessels. Currently pending are proposals to regulate new hydraulically fractured oil wells, pneumatic pumps, compressors, and fugitive emissions. These regulations apply to virtually every new well site and manage the emissions. Consequently, the issue of emissions management is essentially settled, and the principle issue of the source determination rule will be the regulatory burden for the specific permitting programs of the proposals – PSD, NNSR, and Title V. Because emissions are not the driving factor in the decision, EPA should move toward limiting burdens rather than expanding them.

These factors shape our view that Option A – *Define Source Based on Proximity (Similar to the NESHAP)* – is the far better framework to address source determination. As EPA characterizes Option A:

Under the first, and currently preferred, option for which the EPA is taking comment, the EPA proposes to define "adjacent" such that the source is similar to that in the NESHAP for this industry, Subpart HH, National Emissions Standards for Hazardous Air Pollutants From Oil and Natural Gas Production Facilities (40 CFR 63.760). Under this option, the "source" for oil and natural gas sector activities is presumed to be limited to the emitting activities at the surface site, and other emitting activities will be considered "adjacent" if they are proximate. Thus, under this first option, two or more surface sites must be considered as a single source if they share the same SIC code, are under common control, and are contiguous or are located within a short distance of one another.

We prefer this option because we believe that a definition that centers on a surface site is familiar to the industry and the regulators because of the current NESHAP requirements, so it will streamline permitting. We also believe that a definition focused on a surface site most closely represents the common sense notion of a plant for this industry category. Surface sites that are not in close proximity to one another may be on a separate lease which may not align with the common sense notion of a single plant. In addition, we believe that this definition is consistent with Congress' intent, at least as they expressed it with regard to [hazardous air pollutants (]HAPs[)], as discussed previously.⁶¹

IPAA/AXPC essentially agrees with EPA's characterization and its rationale. Where IPAA/AXPC differs relates to an issue where EPA seeks specific comments – whether it is

⁶¹ *Id.* at 56,586-7.

appropriate to establish a specific distance within which to consider multiple surface sites as a single source, and if so, what that distance should be. EPA is proposing a distance of a ¹/₄ mile. IPAA/AXPC believes that EPA should, instead, adhere to the approach it has used in the NESHAP formulation. EPA should base its final factor on sites being contiguous in addition to sharing the same SIC Code and being under common control.

This approach improves on the proximity concept because it avoids picking an arbitrary distance, such as a ¹/₄ mile. Moreover, it readily addresses another issue that EPA raises – "daisy-chaining". EPA is correct to be concerned that linking one site to another through its proximity invites the opportunity to link a third or a fourth or more sites solely on the basis of proximity. There is no value in daisy-chaining since the individual sites are each subject to the emissions management requirements under the appropriate NSPS or whatever additional regulations apply.

If, however, EPA persists in utilizing a specific distance, it is correct that some states use ¹/₄ of a mile as a bright line to exclude needless source determinations for facilities outside that distance. However, most states then conduct a case-by-case source determination for facilities inside the ¹/₄ mile based on proximity and the "common sense notion of a plant." Therefore, if EPA persists in utilizing a specific distance, it should follow the example of most of the oil and gas producing states and use the bright line to trigger a case-by-case source determination inside that bright line. It is also important to recognize that using an arbitrary distance raises questions of daisy-chaining, and EPA should have language either in the rule or the preamble to state that facilities should not be daisy-chained. EPA has also asked from where a specific distance should be measured. We suggest that the distance be based on the center of the new source triggering the source determination to the center of any nearby facility.

EPA should reject Option B – *Define Source To Include Exclusively Functionally Interrelated Equipment*. Option B essentially invites daisy-chaining. It creates the opportunity to link multiple facilities regardless of the distances between them. For example, as EPA states "[e]xclusive functional interrelatedness might be shown by connection via a pipeline or other means, because of the physical connection between the equipment."⁶²

This characterization largely parrots the circumstances in the *Summit Petroleum Corp. v. U. S. Environmental Protection Agency*, 690 F.3d 733 (6th Cir. 2012) case. In this case, as EPA describes in its discussion of these proposals:

In the decision, the Court said that the EPA's use of interrelatedness in determining whether sources were "adjacent" is unreasonable and contrary to the plain meaning of the term as currently used in EPA's regulations. The two judges in the majority found that the term "adjacent" was unambiguous and its plain meaning related only to physical proximity, and thus could not include

⁶² *Id.* at 56,587.

consideration of functional interrelatedness. The EPA sought rehearing of the Court's decision, but that request was denied.⁶³

Why EPA would suggest moving back toward this judicially rejected approach is unfathomable. More importantly, it does not create any environmental benefits, because, as stated above, the existence of the current and proposed EPA oil and natural gas production regulatory requirements would apply to the separate facilities. Option B would only create substantially expanded regulatory burdens.

In conclusion, IPAA/AXPC believes that EPA's appropriate choice is a modified Option A relying on the use of a contiguous border to aggregate sources if aggregation is appropriate. To facilitate clarity on this issue, IPAA/AXPC suggests adding the following definition where appropriate in the Code of Federal Regulations:

"Contiguous or adjacent properties" mean surface areas with an affixed building, structure, facility or installation including permanently graded or cleared areas for such building, structure, facility or installation, that share an edge/boundary, physically touch, and are adjoining or physically abutting.

CONCLUSION

IPAA/AXPC values the opportunity to comment on the above referenced regulatory proposals. The oil and natural gas production industry has worked closely with EPA over the past decade to promulgate reasonable, cost-effective regulations on air emissions. While industry objected to various aspects of the Subpart OOOO regulations controlling VOC emissions from various sources within the oil and natural gas sector, through the administrative reconsideration process and revisions to Subpart OOOO, many of the issues have been addressed without protracted and costly litigation. The proposed Subpart OOOOa and CTG regulations seem to represent a departure from a willingness on the part of this Administration to promulgate reasonable, cost-effective, and most importantly, needed regulations.

EPA's pollutant of concern is methane. Unlike other "pollutants" and other industrial "products," methane is not treated as a pollutant in the oil and natural gas industry – it is a valuable product. Unlike other industries, market forces are constantly at work to minimize what EPA views as a pollutant and our industry views as a product. The fact methane is a primary constituent of what this industry produces explains, in large part, why emissions from the exploration and production segment of the oil and natural gas sector have gone down while production has gone up (see Section I above). In reality, most of the reductions are a function of voluntary measures by producers to retain/capture methane or state regulatory programs where oil and natural gas production has increased dramatically in the past decade.

A central theme to IPAA/AXPC's comments is that the proposed Subpart OOOOa regulations are unnecessary and the CTG proposed regulations are, at best, premature. The

⁶³ *Id.* at 56,584.

EPA's legal foundation and basis for the proposed Subpart OOOOa and CTG regulations are dubious and invite legal challenge. It is arbitrary and capricious for EPA to base its proposed methane regulations (NSPS and CTG) on a model that predicts the social cost of methane. The irony is that EPA can accomplish a majority of its goals with modifications to existing regulations and attainment of the current Ozone NAAQS. The cost of EPA's proposed NSPS and CTG is not justified.

A. Proposed Methane New Source Performance Standards Summary Comments

- Regulations cannot be based on what EPA "believe[s]" "the industry can bear . . . and survive."⁶⁴
- EPA's "consistency," patchwork "endangerment finding," and global warming concerns do not warrant direct regulation of methane emissions from the oil and natural gas sector.
- EPA's failure to evaluate the cost associated with the potential regulation of existing sources under Section 111(d) is arbitrary and capricious.
- States (and operations within those states) should not be penalized for taking early action to address emissions from the oil and natural gas sector, i.e., compliance with essentially equivalent state programs should be deemed compliance with the finalized Subpart OOOOa regulations.
- EPA's focus on fugitive emissions at well sites and compressor stations is premature and not supported by reliable cost/benefit data.
 - EPA's request for input and comment on numerous aspects of the proposed regulations is indicative of an issue that regulators and industry are still learning to address.
 - The "corporate fugitive management program" is a logical way to address the issue, but regulators and companies need time to determine what such a program should look like.
 - EPA's cost-effectiveness analysis for the proposed regulatory package suffers from shortcomings on both sides of the equation: for the reasons set forth above, the costs are understated and the benefits are overstated or unsupported.
 - States with the most active shale plays are learning valuable information on how to reduce fugitive emissions. EPA should not rush to judgement and establish federal standards that will be inconsistent, duplicative and potentially unnecessary because of state efforts.
 - For the reasons stated above, EPA should not dictate a specific technology for determining "leaks." OGI may be appropriate in certain instances, but EPA's selection of one technology is arbitrary and capricious.
 - EPA's proposed approach to determining the frequency of LDAR surveys based on percentage of leaking components demonstrates its lack of understanding of the issues associated with fugitive emissions. As discussed above, EPA's

⁶⁴ Oil and Natural Gas Sector: Emission Standards for New and Modified Sources, 80 Fed. Reg. 56,593, 56,629 (Sept. 18, 2015) (to be codified at 40 C.F.R. pt. 60)

proposed regulations would impose significant costs on the industry with dubious environmental benefit.

- IPAA/AXPC supports EPA's proposed exclusions but seeks clarification that the 15 boe exclusion also serves as an off ramp to reduce the burden of the proposed regulations.
- Oil well RECs are not the same as RECs at natural gas wells.
 - IPAA/AXPC questions if EPA has documented new information to justify the cost-effectiveness of RECs on oil wells. The economics and engineering limitations at oil wells are different than natural gas wells, and EPA has failed to adequately differentiate between the two and justify RECs at oil wells.
 - IPAA/AXPC supports the limited exclusions to the oil well REC requirements but suggests clarification as to the requirements associated with noncombustible gas.
- EPA's proposed regulation of pneumatic pumps fails to adequately reflect the complexity, cost, and safety issues associated with sending captured natural gas to an existing combustion device. IPAA/AXPC believes that if the costs associated with such complexity were adequately reflected, the proposed regulations would not be cost effective.
- IPAA/AXPC supports EPA's proposed regulations that indicate the compressor rules do not apply to compressors at the wellsite but requests clarification that a similar exclusion applies under the proposed CTG.

B. Proposed CTG Summary Comments

- The CTG regulations must be based on a technological analysis for RACM instead of arbitrarily transposing new source BSER requirements to existing sources.
- The CTG regulations need to recognize differences across the oil and natural gas production industry that recognize size and scope of operations.
 - Marginal oil and natural gas production facilities should be excluded from all of the CTG.
- The CTG regulations must be based on their applicability to manage VOC emissions in Ozone NAAQS nonattainment areas.
 - EPA has failed to provide justification for the CTG as necessary for Ozone NAAQS attainment and, in reality, EPA's projections of Ozone NAAQS attainment in 2025 demonstrates the CTG are not necessary.
 - Implementation of the CTG in the absence of a demonstrated need is counterproductive and unnecessarily constrains economic growth.

C. Proposed Point Source Determination Summary Comments

- EPA should adopt a Source Determination definition that adheres to the approach it has used in the NESHAP formulation. EPA should base its final factor on sites being contiguous in addition to sharing the same SIC Code and being under common control.
- EPA should reject the use of functionally related equipment as a consideration in adopting revisions to its Source Determination definition.

If EPA has any questions or concerns, please do not hesitate to contact us.

Sincerely,

-ulles ee

Lee Fuller Executive Vice President Independent Petroleum Association of America

U. Bruch

V. Bruce Thompson President American Exploration & Production Council

Cc: Janet McCabe, EPA Joe Goffman, EPA Peter Tsirigotis, EPA David Cozzie, EPA Bruce Moore, EPA Cheryl Vetter, EPA Chris Stoneman, EPA Charlene Spells, EPA

ATTACHMENT A

ACRONYM INDEX

AAPL	American Association of Professional Landmen	
AEO	Annual Energy Outlook	
AESC	Association of Energy Service Companies	
ANGA	America's Natural Gas Alliance	
API	American Petroleum Institute	
AR5	Fifth Assessment Report	
AVO	audio/visual/olfactory	
AWEA	American Wind Energy Association	
AXPC	American Exploration and Production Council	
boe	barrels of oil equivalent	
BSER	best system of emission reductions	
CAA or Act	Clean Air Act	
CMSA	Consolidated Metropolitan Statistical Area	
CTG	Control Technique Guidelines	
EIA	Energy Information Administration	
FLIR	forward looking infrared	
GHG	Greenhouse Gas	
GOR	gas-to-oil ratio	
HAPs	hazardous air pollutants	
IADC	International Association of Drilling Contractors	
IAGC	International Association of Geophysical Contractors	
IPAA	Independent Petroleum Association of America	
IPCC	Intergovernmental Panel on Climate Change	
LDAR	leak detection and repair	

NAAQS	National Ambient Air Quality Standards	
NCA3	2014 National Climate Assessment, Climate Change Impacts in the United States	
NESHAP	National Emission Standards for Hazardous Air Pollutants	
NGO	non-governmental organizations	
NNSR	Nonattainment New Source Review	
NSPS	New Source Performance Standards	
NSWA	National Stripper Well Association	
NYMEX	New York Mercantile Exchange	
OGI	optical gas imaging	
OTR	ozone transport regions	
PESA	Petroleum Equipment & Services Association	
PSD	Prevention of Significant Deterioration	
RACM	Reasonably Available Control Measures	
RACT	reasonably available control technology	
RECs	reduced emissions completions	
RIA	Regulatory Impact Analysis	
SCADA	supervisory control and data acquisition	
SCC	social cost of carbon	
SC-CH ₄	social cost of methane	
SIC	Standard Industrial Classification	
SIPs	State Implementation Plans	
TSD	Technical Support Document	
USG	United States Government	
USGCRP	U.S. Global Change Research Program	
USOGA	U.S. Oil & Gas Association	

- VRU vapor recovery units
- WEA Western Energy Alliance